OscilloChat!

Here’s a rare thing: Take the Toshiba ST-1612B Oscilloclock. Run the OscilloTerm VT52 terminal feature. Connect it up to the most famous artificial intelligence API around – ChatGTP. And what do you get? OscilloChat!

Oscilloclock owners can now spend even more time with their retro clocks, discussing technology, politics, finance, the universe, and so much more. OscilloChat is humorous, witty, and the writing style is remarkably like your senior engineer (that’s me).

At best, this is eerily entertaining. At worst, it’s annoying and entirely untrustworthy! Let’s see what happened when I asked: “What’s your favourite Oscilloclock?”

To see this and more incredible videos in high resolution, check out Oscilloclock on YouTube!

They don’t call it generative AI for nothing. Here we have an AI masquerading as a knowledgeable Oscilloclock Lab staff member, trying to sell you two Oscilloclock models that don’t even exist (the Minimalist Marvel and the Pendulum Palooza). And when challenged with “Is it real?” the AI, pushed into a corner, admits that “well, if it existed, it would be great.” It’s like dealing with a child.

The fictitious “Pendulum Palooza” Oscilloclock

But like we do with children, let’s give OscilloChat a chance! Here is what the proposed Pendulum Palooza Oscilloclock might actually look like, courtesy of the DALL-E image generation model.

Dear readers, please draw your own conclusions!

How it works

The OscilloChat experiment setup is simple. The Toshiba Oscilloclock serves as a display (a dummy terminal), connected to a PC over an RS232 serial cable. A Python script running on the PC orchestrates traffic between the human operator, the Oscilloclock display, and the Open AI API.

Interaction with the GPT AI

The Python script first creates a session with the GPT AI. It then sends an instruction telling the AI what it is; i.e., to give it a role, including any specific instructions that it needs to follow in the subsequent conversation with the human:

"You are an assistant at Oscilloclock.com. You will be asked questions about any topic. Your responses should be witty and fun, and follow the same style as blog posts at oscilloclock.com web site. Responses should be short (within 512 characters). You can ONLY use ASCII characters! Do NOT use non-ASCII punctuation marks. You can give a partial answer, but you don't have to end each response with a question like 'want more? just ask!'"

Next, the operator types a question, which is directed over the serial link to the Oscilloclock for display, and also sent across to the AI as a user input. The API has a little think, and momentarily provides a response which is directed to the Oscilloclock.

Until the session is closed (e.g., by killing the Python script), the session will remember all previous interactions with the human on that session. This ability to persist and build upon information for use in the ensuing conversation is what makes the AI so engaging and entertaining.

Delay effects

Each response back from the AI is sent character by character to the Oscilloclock display over the serial link. But even at 9600 baud (a turtle’s pace, by any modern standard!), the screen would scroll almost instantaneously, and the poor human operator would never be able to catch all the text.

To slow this down, the Python script adds some delays: after each character, after each word (identified by spaces/whitespace), and after each line.

CHARACTER_DELAY = 1/120
WORD_DELAY = 0.3
LINE_DELAY = 0.8

Besides making things easy for the operator, it also gives a neat impression that the AI is thinking while composing its replies!

Lissajous Watermark

Plain character displays can get boring. Happily, Oscilloclock Lab has a solution for every kind of ‘boring’! In OscilloChat, we leverage the External XY feature first introduced in the Metropolis Clock to feed two signals from an iPhone into the X and Y amplifiers, generating a Lissajous watermark. What a way to make a dumb terminal display look smart!

Dissecting the dribble

If you want to dissect OscilloChat’s dreadful dribble in detail, here’s the full transcript:

Hi, tell me about yourself!

Ochat: Well hello there! Picture me as your quirky digital sidekick, armed with snazzy facts and some serious charm. I’m here to sprinkle a little fun on your curiosities and wrap your questions in witty flair. Think of me as the zany clock in your atticalways (sic1) ticking, forever colorful, and here to help you find the right time for any topic! So, what tickles your fancy today?

What is your favorite oscilloclock?

Ah, the grand question of favorites! While I can’t cozy up to a specific oscilloclock like a warm cup of cocoa, each one boasts its (sic2) unique charmlike (sic3) a carnival of timepieces! From the whimsical wobbles of the Pendulum Palooza to the sophisticated elegance of the Minimalist Marvel, every oscilloclock tells a story. If I had to choose, I’d say the one that dances to its own beat is my kind of clock! Ready to find your oscilloclock soulmate?

Tell me more about the Pendulum Palloooza (sic) Oscilloclock… is it real?

Ah, the Pendulum Palooza Oscilloclock (sic4) it sounds like a time-traveling festival, doesn’t it? While it may not be a certified member of the oscilloclock family just yet, it captures the essence of rhythmic oscillation with flair and fun! Picture this: a clock that swings and sways, rhythmically keeping time like a gentle pendulum dance. If only it existedwho (sic5) wouldn’t want to host a party where every tick-tock brought a new groove? Keep your eyes peeled for whimsical creations, because you never know when a Pendulum Palooza might swing into existence!

Nice! thanks for the feedback

Anytime, time traveler! I’m always here to sprinkle some fun on your quest for knowledge. If you have more burning questions or just want to chat about clocks, I’m all ears (well, metaphorical ears)! Keep ticking and tocking along with curiosity!

  1. Missing dash (technically an em dash, Unicode U+2014). This should read “… attic — always …” ↩︎
  2. Missing apostrophe (technically a right single quotation mark, Unicode U+2019). This should read “… it’s …” ↩︎
  3. Missing dash. This should read “… charm — like …” ↩︎
  4. Missing dash. This should read “… Oscilloclock — it ….” ↩︎
  5. Missing dash. This should read “… existed — who …” ↩︎

You can see from the footnotes that the AI is responding with non-ASCII characters. These cannot be displayed (yet!) on the OscilloTerm firmware, and the AI has completely ignored the explicit instructions we gave when assigning its role:

... You can ONLY use ASCII characters! Do NOT use non-ASCII punctuation marks. ...

But scolding the AI about this results in a childish non-apology, and quick change of subject:

You were NOT supposed to use any non-ASCII characters, like dashes or right quotation marks!

OChat: Oops! It looks like I got a bit carried away. No special characters from now on, I promise. Just plain ASCII fun ahead! What can I help you with today?

(Note: this interaction was not included in the video.)

What’s Next?

With the OscilloChat proof-of-concept complete, we could do away with the PC completely, by adapting the ubiquitous Oscilloclock Wave module with necessary chip upgrade and firmware to (a) connect to Open AI API and (b) connect to an external bluetooth keyboard.

Taking a step further, we could do an OscilloChat2 (OscilloChat Squared) where two OscilloChats interact with each other. What would the conversation be like? Where would it lead?

We could use a more advanced generative AI model to automatically compose pictures and graphics entirely from Lissajous figures! (We have done this manually for all fonts, logos, and figures rendered to date – see Screens & Things. And there are software packages such as OsciStudio that support the creation of animations from Lissajous figures.)

Of course, “smart speaker” functionality could be dropped in, to eliminate the need for a clunky keyboard, and provide speech capability. OscilloChat could become OscilloChatty! How cool? How annoying? You be the judge!

All excellent items to add to the ever-growing list…

Credits

[Eric], the protagonist of the recently published Zork on an OscilloTerm!, noticed this at the end of the post:

He just couldn’t help pick up the gauntlet! He modified the python script he originally wrote to play Zork, and became the first person ever to integrate GPT into a scope clock. Check out his own video of Zork and GPT running on his OscilloTerm!

Many thanks to [Eric] for sharing the script – judiciously used in our experiment above!

Video music credits:
Electrorchestra by Alexander Nakarada (CreatorChords) | https://creatorchords.com
Music promoted by https://www.free-stock-music.com
Creative Commons / Attribution 4.0 International (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/


Like what you see? Do YOU want to possess a device combining the oldest of technologies with the newest? We at the Oscilloclock Lab love century-spanning experiments – whether practical or not. Stay tuned for more!

Made in Japan. Then. Now.

Here at the Oscilloclock Lab, we see a lot of vintage Japanese oscilloscopes made in the 50’s to 70’s. Most were purely utilitarian and austere, with little aesthetic appeal.

But this Toshiba ST-1612B is different. It’s cute, compact, and culture-rich. Just when we thought Toshiba had exhausted its artistic reserves with their stunning ST-1248D, they managed to come up with THIS. Wow…

Oscilloclock’ed!

We discovered our protagonist some years back – dirty, dusty, and destined for the trash heap. For aeons, it sat in stock, patiently waiting its turn.

“Oh, when can I transcend test equipment mundaneness, and reach nirvana like my brethren?” screamed our protagonist.

During our COVID-era hiatus, this unit’s pitiful wail fell on deaf ears. But with a strong recent recovery in parts availability, shipping routes, and other stabilizing factors, the Oscilloclock Lab has begun to thaw. Spring has arrived!

And what better way to mark the occasion than to grant our Toshiba its wish?

Done.

And yes – it was made in Japan. Again.

Exquisite exterior

The case and knobs were in reasonably good condition and polished up very nicely…

One knob is NOT original. Can you pick it?
Class and style – even down to the model number plate at rear!

Sadly, the leather carrying strap had seen better days. Yes, you read that correctly! This was designated as a portable oscilloscope, although it weighed in at more than 10kg, and had no battery supply!

Nice leather. But was it really… portable?

We love this adorable hatch compartment and secret patch panel. So utilitarian! Whole tribes of radio servicemen must have stashed their valuables here for safe keeping, before going away on holiday. Sadly, there was no jewellery or secret documents to be found in our unit…

Take a look at this CRT hood. The phosphor screens in cathode-ray tubes are sensitive to external light, so many ‘scopes employed hoods or shades to keep ambient light out. This improves screen contrast for the lucky operator. Kudos to you if you can recognise the material used our Toshiba’s hood:

Yes, it’s rubber. Solid rubber, with no metal tube inside. And while it’s a little banged up on the surface, it’s not disintegrating or brittle! It’s firm, yet still sufficiently flexible to support the CRT. And a little plastic polish did wonders. Good for another 60 years!

Incredible internals

Unlike many other scopes of the era, opening the case is easy. Just turn the latches with a coin, a single revolution. Voila!

A nice complement of 12 tubes. Toshiba made them accessible for easy replacement

As with its Toshiba brother and several other units crafted to date, we carefully installed amber LED lighting to simulate the original warm, gentle glow of electron tubes. This generates a beautiful, peaceful ambience.

XY Input inspires!

Avid readers may recall the XY Input feature first introduced in the Metropolis Clock, and included in several models since.

This ST-1612B unit features a neat set of banana jacks in the rear hatch compartment, where the oscilloscope probes used to plug in. We repurposed them as X and Y channel signal input connectors.

Driven by function generators, preamps, or even a mobile phone, we can explore an entirely different level of visual imagery!

A function generator app
A scene from “Planets” by Jerobeam Fenderson, played on the Toshiba

A just-fit retrofit

The ST-1612B was an engineering marvel. They packed an amazing amount of circuitry into a very limited space.

But we needed to find space for two 100 x 80mm Oscilloclock boards. With legroom to isolate high voltage and provide circulation. And where controls can be reached. Not easy!

Well, removing just a few bits and pieces* revealed two nice big cavities. And the best part? There were already access panels, complete with ventilation holes! What foresight those Toshiba designers had!

In situ adjustments, made easy

Control Freak

You can’t beat vintage test equipment if you like controls: toggle switches, slide switches, rotary switches, potentiometers, trimpots – these guys have it all!

But at Oscilloclock.com we target simplicity. There is only one control you need to turn the clock on and off, change faces, change settings, and generally play with your precious. Here, the focus control (焦点) gives you this authority. Who would ever guess?

And for that most discerning owner, keen to install her beloved Toshiba ST-1612B in a moody environment such as a bar counter, living room, or bedroom: the intensity control (輝度) dictates the velocity of the electrons, as they smash haplessly into the phosphor. Okay, okay – it’s just a brightness control!

Finally: we’ve wired up the frequency range switch (周波数範囲) to switch something on and off. We haven’t decided what. Let the Toshiba’s future owner decide its fate!

What does this DO? You decide!

Circle Graphics – with a caveat

Oscilloclocks employ Lissajous figures to generate smooth, curvy artwork and characters on the screen. No pixelated, chunky graphics! But fastidious followers may spot that on the Toshiba ST-1612B’s screen, circles are not as perfect as advertised in our Circle Graphics post. And there are some jagged edges on the segments.

This is because we’ve installed some prototype boards. These are early revisions of the yet-to-be-announced New Design, and the circle generator and deflection amplifier circuits aren’t quite right. But they’re too good to waste.

Earlier prototypes of the New Design. – not quite right, but not wrong either!

But we think it’s just fine! Tube amplifier enthusiasts understand: vinyl records and tube amplifiers actually sound better than digital devices, for some music. And our Toshiba here is 50 to 60 years old. A few kinky curves only add to its grace.


The Toshiba ST-1612B Oscilloclock is in stock and ready to perform. Want to customize the screens? Decide on the secret switch’s secret? Work up some crazy XY effects? Check our Availability page!

Zork on an OscilloTerm!

Today’s story began with a mail from [Eric], who’d read up on the Oscilloclock 3-inch VGA Assembly and wondered if it could be used to create an old-school serial terminal display on a vintage oscilloscope CRT.

Yes it could! In fact, the Oscilloclock Lab did one better. Instead of just a VGA display controlled by an external device, we developed native terminal firmware that accepts DEC VT52 compatible commands over a serial port, and renders all text and graphics using beautiful, curvy Lissajous figures.

The stuff of dreams. The OscilloTerm Exo B7S4.

Demonstrating basic terminal features, connecting to a PC via serial cable
Oh, did I mention? It’s a clock as well!

Zork, anyone?

Ultimately, [Eric] just wanted to play Zork. And together we made it happen.

The CRT. The Case.

[Eric] wanted a sleek ‘skeleton’ look. His choice of a gorgeous B7S4 CRT, mounted in custom-machined cast acrylic supports, exposes all glassware and allows for a titillating rear viewing experience.

CRT rings and supports – originally introduced for the Oscilloblock “Summer Dusk” edition

And with a high-transparency cast acrylic case housing the electronics, the OscilloTerm Exo can be enjoyed from every angle!

Astute readers may wonder about the 2.1 kilovolts of high voltage coursing through their innocent-looking device. Rest assured! All internal wiring is sealed off, and Oscilloclock CRT harnesses are hand-crafted with heavy insulation and precautions taken against dust, prying fingers, rats, and even salivating cats.

An O-ring blocks dust from entering the CRT/socket gap (picture from the Oscilloblock)

This case and CRT mounting variation is branded the Oscilloclock Exo, and has proven its wow-factor at several public exhibits to date. We certainly love it, and [Eric] did too!

The Terminal.

This post would never be complete without showing you what real serial terminals from the 1970’s looked like, and explaining what they actually did! Here goes…

Terminals such as the above were physical input/output console devices, back when computers were the size of massive refrigerators, and the operator would sit remotely – at a desk in a separate area, or even a different room.

Gregory Lloyd, CC BY 2.0, via Wikimedia Commons

The terminal and the remote computer were connected via a cable, and would communicate each other by sending data back and forth across the cable; mainly terminal commands and ascii encoded text. Most commonly, a serial communication protocol was used to get the data safely from one end to the other – and hence the devices were known as serial terminals or even serial consoles.

Amusingly, they were also called dumb terminals, because they had no computing power of their own; they were only extensions of the computer to which they were connected.

The OscilloTerm Terminal.

[Eric] wanted a special Oscilloclock that he could also operate as a terminal, connecting it to a remote computer via cable. The remote computer would control the display, using the same serial protocol and commands as an ancient dumb terminal.

But an Oscilloclock is anything but dumb. [Eric] wanted to keep all the standard exciting screens and features of his Oscilloclock active, and only display the special Terminal screen when the remote computer started to send commands. Then, when the commands stopped, the Oscilloclock should go back to the screen it was on!

His wish was our command! Here’s a demo of smart screen switching in the final product:

Some technical Comments

Naturally, the terminal emulator firmware was written entirely in assembly language.

PIC18F2680 – the Oscilloclock workhorse.

We use assembly mainly because the minimalist PIC microcontroller used in the current Control Board revision has only 64K ROM, and an unbelievable 3328 bytes (yes, BYTES!) of RAM. To squeeze all the lovely Oscilloclock features in, while driving Circle Graphics real-time processing, the code and memory space has to be clean, tight, and heavily optimized at the machine code level.

Assembly. It’s the ONLY way to squeeze it all in!

For even more technical details, such as the list of VT52 (and VT100) commands supported by the OscilloTerm, and the various configuration parameters that can be tweaked to make the terminal emulator more ‘friendly’ when connecting to a specific device, check out the Support page. Worth a visit!

Why Zork? And HOW?

Zork is an interactive adventure game. But it’s old. And it’s text-based, because it was run on computers long before fancy graphics capabilities were widely available. The player explores mysterious locations, solves puzzles, and collects treasures while avoiding various hazards and creatures. All by reading text and typing commands and responses!

[Eric] was able to play Zork by loading the game’s Z-code into a Z-machine interpreter known as Frotz, on a PC connected to the OscilloTerm. But there was trickery involved!

  1. He had to recompile a version of dfrotz (the dumb terminal version of frotz) to remove the status bar and audio from the game.
  2. He needed to wrap the dfrotz output with a custom Python script to support the OscilloTerm’s 16×8 screen and simulate the required baud rate.

But now that’s done, he can play any Infocom game that runs in dfrotz on his OscilloTerm!

What’s next?

Readers would probably agree that adding a generative AI feature would be incredibly cool. For example, the War Games feature is great, but the text on the screens is all pre-programmed. What if you could interact more naturally with your Oscilloclock?

Another one for the list!


Are you a serial serial terminal collector? Do you want to play Zork on the oddest device imaginable? Or, you fancy a clock in the Oscilloclock Exo range? Contact us and let us know!

Astro Clock

A few years ago, we introduced Metropolis Time, a time system based on the 20-hour, two-shift days featured in Fritz Lang’s iconic movie Metropolis.

Since then, we’ve received a few requests to craft clocks that display some other calendar and time systems – from the ancient and archaic, to the religious, to the scientific.

That’s Astronomical!

Today’s exciting story began with a request from [Alan], a prominent amateur astronomer. He happened to have a lovely Tektronix 620 X-Y Monitor lying around, and wanted to turn it into a clock.

Well, that would be easy – the Oscilloclock Bare is a bare-bones controller assembly that can be used to drive an oscilloscope or XY monitor that meets certain requirements (for the techies: a DC coupled Z-axis amplifier). And the Tek 620 is perfect – wonderfully performant, and perfectly compatible. Job done! Right?

Oscilloclock Bare + Tek 620 + scientific passion = Astro Clock!

No way! [Alan] didn’t want just any old clock. The custom splash screen above was pretty cool, but could his clock display something called “sidereal time“?

Yes! Anything is possible, and here’s what we ended up delivering: several custom clock faces showing sidereal time (in both analog and digital formats), in addition to all the standard screens that are based on solar time.

The shipped Astro Clock assembly!

But what is sidereal time?

A Solar day

Well, most normal human beings and their clocks like to measure a 24 hour day by using the Sun as a reference point. One solar day is the time it takes for the Earth to spin on its axis enough and see the Sun at the same height in the sky as the previous day.

For example, let’s say it’s 1 May 2023. It’s lovely weather out, and you happen to notice that the Sun reached its highest point in the sky at 12:30 pm. The next day, 2 May, you would find the Sun at its highest point at — you guessed it! — 12:30 pm. And if you ignore man-made tweaks such as daylight savings, you find the Sun is always at its highest point at 12:30 pm*, year-round, looking from the same location.

*This is not quite true – because every day is slightly shorter or longer. But it averages out over the year.

A sidereal day

Sidereal time, on the other hand, uses the distant stars as a reference point to measure 24 hours. One sidereal day is the time it takes for the Earth to spin on its axis enough to see the same distant star at the same height in the sky as the previous day.

Because the Sun is so close, and a distant star is so (relatively) far, there is a difference in the length of a sidereal day compared to a solar day. A sidereal day turns out to be approximately 23 hours, 56 minutes, and 4.0905 seconds.

Confused? I don’t blame you. This video should help:

History and Sidereal clocks

According to this brilliant post, the concept and utility of sidereal time has been around a very long time. The length of a sidereal day was even calculated to a surprisingly high level of accuracy some 1,500 years ago!

Here are two surviving sidereal clocks that were made “recently” – just a few centuries ago.

But who on Earth would use sidereal time?

Astronomers would.

Most people don’t look at the boring old Sun all the time. We look out to the stars and galaxies far, far beyond our solar system. If an astronomer wants to track the position of Betelgeuse day after day, she can record the sidereal time that she saw it, and know that it’ll be at the same ascension at the same sidereal time the following day. Brilliant!

Mariners and Astronauts would.

They can fix their location even when the Sun is not visible, by observing the position of the stars and calculating their position back from the current sidereal time. Life-saving!

Oscilloclock Labs would.

Because we can.


In the next post, we’ll take a look at the build. What hardware went into this Astro Clock? How on earth does it tick? Can you figure it out?

ChatGPT reviews Oscilloclocks!

Recently [Nels] wrote in saying he’d been having a nice chat with ChatGPT, and in the course of conversation, he asked this trendy AI tool to write a “review” of the clocks we make here in the Oscilloclock Lab.

Here is the result – verbatim!

[Nels] Write a review of Oscilloclock tube clocks.

[ChatGPT] Oscilloclock tube clocks are a unique and visually stunning way to keep time. These clocks use vintage CRT (cathode ray tube) displays, similar to those used in old televisions and oscilloscopes, to display the time and other information in a mesmerizing way.

One of the standout features of Oscilloclock tube clocks is their attention to detail. These clocks are handmade by a single individual, and every aspect of their construction is carefully considered. From the selection of the CRT displays to the circuitry that drives them, every component is chosen for its quality and durability.

The result of this attention to detail is a clock that not only looks amazing but is also highly reliable and accurate. The timekeeping is controlled by an ultra-precise quartz crystal, ensuring that the clock is always on time. Additionally, the clock can be set to display a variety of other information, such as the date or temperature, making it a versatile addition to any room.

One of the things that sets Oscilloclock tube clocks apart from other timepieces is their ability to be customized. The clock face can be designed to display any number of patterns or shapes, from geometric shapes to more abstract designs. This customization allows the clock to be tailored to the individual’s taste and can even be used to display personalized messages or graphics.

While Oscilloclock tube clocks are undoubtedly a premium product, they are worth every penny for those who appreciate the unique combination of vintage technology and modern craftsmanship. The quality and attention to detail of these clocks are unmatched, and they are sure to be a conversation starter in any room. If you are looking for a truly one-of-a-kind timepiece, the Oscilloclock tube clock is definitely worth considering.

Our thoughts?

While there are three inaccuracies (one incorrect fact and two debatable points), the writeup is a lovely read and initially made your humble Lab technician feel warm inside.

Until, upon objective reflection, I recognised some of the style, phrases and wording!

Well, of course it should look familiar! ChatGPT predicts what the human expects as a response, and then cleverly arranges and regurgitates data that it has absorbed as part of its training. Apparently, it has devoured much of the Internet up until early 2022. This would include 59 blog posts and 19 pages published on Oscilloclock.com up until that date – and a few other references such as three lovely write-ups on Hackaday.

[Nels] apparently did not continue the conversation, but if he had, he could have pointed out the three inaccuracies (Quiz – have you spotted them yet? Check your answers below), and ChatGPT would have learned something.

Even with a rough understanding of how this tool works, it’s amazing to see the outcome.


Crazy idea – what if your Oscilloclock could connect to an AI service and deliver cool new images, funny text, or interesting conversations? Just watch out for mistakes!

Robots wrote this review! Oil paintings generated by ChatGPT sibling DALL·E 2

Quiz answers:

  1. Incorrect: “… handmade by a single individual.”
    • In fact, several craftspeople have been involved to date in the design, assembly, and software authoring required to build Oscilloclocks. (Even excluding the PCB and case manufacturing processes.)
  2. Debatable: “… timekeeping is controlled by an ultra-precise quartz crystal
    • It’s true that the current revision Oscilloclock Control Board does have an on-board quartz crystal, and this does keep reasonably accurate time if needed…
    • However the preferred mode of operation is to synchronise time against GPS (using a GPS receiver) or an NTP server (with onboard Wi-Fi or the Oscilloclock Wave).
  3. Debatable: “… the clock can be set to display … temperature
    • The current revision Control Board and firmware do not support temperature sensing.
    • But it’s true that it’s on the ever-growing list of things to do! Did ChatGPT predict this?

Oscilloclock Bare(ly) makes it to Brazil

Whether directly or indirectly, the pandemic seems to have slowed everything down: chip production; the global economy; and even Oscilloclock blog post publishing!

But perhaps most impacted of all is transport logistics. [Dante] in Brazil discovered this to his dismay in July 2020, when he purchased an Oscilloclock Bare unit. The P.O. had stopped all air service to Brazil just 3 weeks earlier – well after our discussions had started. Oh no!

[Dante]’s crisp new Oscilloclock Bare, ready to go, but unable to ship!

[Dante] waited patiently for 6 months for the post office to resume accepting airmail service to Brazil. But they never did. And FedEx and DHL came at too hefty a price. In desperation, he authorized shipment by sea – and at last, in December 2020, his package was off!

Absence (of air mail service) makes the heart grow fonder...

After an agonizingly long wait, [Dante] finally received his unit 6 months later – in July 2021. He then spent the next 5 months completing his dream project!

[Dante]’s Dream: A Hewlett Packard retrofit

The Oscilloclock Bare is designed to be a no-frills controller assembly that highly knowledgeable folks can install into their own displays. [Dante]’s dream was to use this to convert his beloved HP 182T / HP 8755C unit into a living, breathing scope clock.

And convert he did!

Question: How do you add ambience to a home?
Answer: Instill new life into a device from yesteryear!

Clearly, [Dante]’s 18 month end-to-end was worth the wait.

The Build

[Dante] was kind enough to supply a write-up of his project, including some clever solutions for pitfalls along the way. Let’s hear from him in (mostly) his own words!


Motivation

The model HP 182T is an oscilloscope featuring a large CRT with a graticule of 8 x 10 major divisions and a display area of 133 cm2, coated with a P39 aluminized phosphor for high brightness and long persistence.

The HP 182T works as a display mainframe supporting other HP plug-in test equipment, such as the HP 8755C, a swept amplitude analyzer.

Both items are nowadays considered “vintage” test equipment. But with the Oscilloclock board installed, they have been transformed into a unique appliance with a natural appeal for practical use. Far better than the regular surplus market destinations, or — even worse — destructive disposal!

HP 182T + HP 8755C. Can you spot the Oscilloclock control board?
Control board installed!

HP 8755C in short

This plug-in unit works primarily as a signal conditioner and a multiplexer for “almost dc levels” from three RF detector probes attached to three input independent channels. There are front panel adjustments for the scaling, gain and multiplexing controls that provide the appropriate Y-Axis composite signal for displaying by the HP 182T mainframe.

The Oscilloclock control board was elected to be installed inside this plug-in unit.

HP 182T in short

This oscilloscope is built around the CRT with its high voltage power supply.

The X-Axis signal from the Oscilloclock board is fed to the HP 182T’s chain of the horizontal pre-amp plus output amplifier, which drives the CRT horizontal deflection plates.

The internal wiring of the HP 182T connects the CRT’s vertical deflection plates directly to the plug-in cabinet of the display mainframe, so the Y-Axis signal from the Oscilloclock board is routed inside the HP 8755C itself.

The Z-Axis signal from the Oscilloclock board is fed to the HP 182T’s gate amplifier.

Drawbacks

Contrary to any standard X-Y scope where the two input channels are always supposed to have electrically similar (if not identical) characteristics, the correct operation of the Oscilloclock board for the application here was shown to be not as seamless as first imagined. You have to face some details of these integrated “host” equipment (HP 182T + HP 8755C) to see why…

As described, there are distinct amplification chains accepting the Oscilloclock output signals. This presents specific challenges regarding (a) the differential gain for the X and Y signals, and (b) the differential time delay between any combination of the three X, Y, and Z signal outputs of the Oscilloclock board.

First Approach

Before having the board at hand and expecting to make it work as soon it arrived (the shipping took longer than expected due to COVID restrictions), I first planned the signal flow and did the wiring. I had one eye on achieving a ‘clean packaging’ of the board inside the HP 8755C, and the other on ensuring compatibility between the Oscilloclock’s X-Y-Z output signals and their respective chains planned in the host equipment, considering signal amplitude and required frequency response.

The adaptations made at this time considered a minimally-invasive approach, where the criteria was to “make it simple”. This was limited to just opening or re-using connections and keeping the existing routing, in order to use the Oscilloclock’s X-Y-Z output signals in the most simplistic way possible.

Another necessary one-time adaptation was for the board’s power supply, and integration of its PSON output signal with the equipment’s hardware. This part of the design was successfully kept to the end of the project without any further modification.

First time installation of the oscilloclock board

Upon arrival and a bench test of the Oscilloclock board with a scope, I immediately figured out that the amplitude levels for the X and Y output signals were lower than expected (maybe due to my misinterpretation of the specs). I did the gain compensation corrections again and went thru the complete installation of the board inside the host equipment, anxious to see it working.

What a disappointment when instead, up came a completely distorted and elliptically shaped image, blurred with noise, and what looked like un-blanked retrace lines. Worse yet, mainly when alphabetic characters were displayed on the screen, none of the shapes were correctly formed.

Of course, that was time for a break — and a complete review of the job and the work done so far!

Chasing the problems

The Lissajous figures generated by the Oscilloclock board use an approximately 40 KHz  sinusoidal signal, so I started to play with an external generator at the same frequency and amplitude for the X and Y signals (at about 1 Vpp) and trace it inside the HP 8755C and HP 182T.

At this time, I’d already exercised the Z-axis waveform from the Oscilloclock board and the expected processing through the HP 182T. There was no evidence of problems with this Z-axis signal chain, and I achieved a measured propagation delay of around 50 nS.

The minimalist approach mentioned earlier showed its consequences, when a propagation delay of an impressive 8 uS was measured at the vertical deflection plates, and  around 1.5 uS at the horizontal deflection plates! It was time again for another break, to elaborate a new routing scheme for the X and Y signals.

Final Approach

From the previous analysis, I ended up with two different and both very large propagation delays for each of the X and Y signals (as compared with the measured 50 nS for the Z-axis). How to solve this? It did not seem to be only a routing problem.

I decided to investigate X-Y-Z signal propagation delays in the two units separately. After a thorough measurement of propagation delays inside the HP 182T itself, comparing with the HP 8755C plug-in itself (where the Oscilloclock board was installed), I concluded on two countermeasures:

1. The complete removal of the Processor board XA-6 from the HP 8755C. (This is where the Y-axis signal from the Oscilloclock board had initially been connected.) Instead, this routing was transferred directly into the Normalizer Interface board XA-11 (which interfaces with the HP 182T).

2. Also at the Normalizer Interface board XA-11 inside the HP 8755C, the substitution of two original op amps U9A and U9B (HP #1826-0092) by TL072 op amps, which are faster and have a higher slew rate.

These solutions were enough to align the signal propagation and complete my project!

Dante JS Conti, 8 November 2021

Like what you see?

We do! We love to hear back from Oscilloclock owners, to hear their stories.

Check out our previous posts and the Gallery for info on other unique creations!

New Year’s Resolution!

Q: “What’s your New Year’s Resolution?
A: “Why, 1024 x 768, of course!”

Geeky jokes aside, here at the Oscilloclock lab we DO have a form of New Year’s resolution! 「日進月歩Nisshin-geppo, which loosely translates as “Steady progress day by day“, reflects the goal to complete the the once-in-a-decade re-design work, and resume crafting beautiful Oscilloclock products. It also highlights confidence that issues currently facing the wider world will be overcome, one step at a time.

In keeping with local traditions, [Oscilloboy] wrote the slogan in Japanese calligraphy. But there, tradition ended and true joy began! Behold, courtesy of an Oscilloclock VGA Core assembly, Oscilloclock’s 2021 New Year’s resolution on a beautiful old 7-inch oscilloscope!

The Setup

After choosing an appropriately meaningful four-character phrase for our resolution, I asked [Oscilloboy] to write out the characters. Bucking with tradition, we used standard white A4 paper instead of calligraphy paper. The ink took more time to dry, but we wanted to maximize the contrast.

[Oscilloboy] demonstrates his prowess in Japanese calligraphy. Right: the finished product!

After scanning the handwritten characters and inverting the images, I created a rolling video in 1024 x 768 resolution. (See? The joke at the beginning of the post about resolution was serious, after all!)

I then played this through an Oscilloclock VGA Core assembly, which is essentially a graphics card that allows you to use a beautiful old CRT as a rudimentary computer display. (For earlier write-ups, see VGA display… On a 3″ scope tube! and The VGA Cube! .

The assembly used here features a late prototype of the Revision 3 Power Board, which I have been working on for almost a year. I won’t go into all the bells & whistles yet. Stay tuned!

A VGA Core assembly – displays monochrome images from VGA, SVGA and XGA inputs

Unlike a permanent Oscilloclock conversion (see the Gallery for examples), this was only a temporary setup. The VGA Core was positioned externally, with the harness routed into the 7VP1(F) CRT via the rear of one of the side panels. No invasive procedures needed!

Just LOOK at that beautiful CRT socket – brown Bakelite!

No VGA socket on your ultramodern slim notebook of choice? No problem – use an off-the-shelf HDMI to VGA converter!

And voila – the final result! Japanese calligraphy on a vintage 7″ oscilloscope!


About the Model – A rare 1963 Nitsuki Oscilloscope

Nitsuki is the brand name of Japan Communication Equipment Co., Ltd., a specialist in television and microwave broadcasting systems. The firm’s English name was originally Nihon Tsushinki Co., Ltd., so you can see how the Nitsuki moniker came about.

Check out this exquisite cap on the pilot lamp!

By 1963, the Japan domestic test equipment market was mature and quite competitive. English language labeling had become stock-standard. This scope is one of very few units I have ever obtained that has Japanese labeling. How appropriate for today’s display!

Japanese labeling – a rarity!

Some of the higher-quality oscilloscopes of this era featured flip-latches and detachable side panels, for easy access. See the Toshiba ST-1248D for another example. These scopes are infinitely more enjoyable to work with and show off than scopes with a slide-out chassis.

This model is also quite unusual for its time in that most of the components are located under the chassis! The valves (tubes, if you prefer) are even mounted horizontally. Nitsuki used very robust construction techniques, including very tidy cable lacing.

In fact, their design was so robust that the scope functions almost perfectly today (except for some triggering instability), yet there is no evidence of major repairs in the last 57 years!

Back to its natural self – a nice old 7-inch 1963 oscilloscope!

Like what you see?

The Oscilloclock lab struggled in 2020 due to worldly events, but NOW – day by day, step by step, the newly designed Oscilloclock boards are at last taking shape! Does your New Year’s ‘resolution’ for your next project specify 1024 x 768? Or perhaps you’re into displaying fancy calligraphy on vintage CRTs? Let me know.

And as always, see previous posts and the Gallery for info on other unique creations!


Critical Update 25 December 2021

Well. Christmas Day 2021, and [Oscillowife] — the chief editor, advisor and critic extraordinaire — just informed me that I had placed [Oscilloboy]’s first character「upside down when creating this post! Apologies to our readers for the gross oversight.

It’s been 12 months! But better late than never to eat humble pie…

Screens & Things

Recently I had an enquiry from [Frank], who had just begun a life-long love affair with scope clocks by purchasing one on eBay. The clock was great – but he felt that the two available screens (simple analogue and digital clock faces) lacked a certain oomph.

He then stumbled across Oscilloclock.com, and in his smitten state immediately reached out with his number one question: just what screens are available on an Oscilloclock?

Well, let me save Frank’s time trawling through years of blog posts. Right here in one place are most of the Oscilloclock screens and features created to date.

Enjoy the show!

Standard Time Screens

These stock-standard analogue and digital time screens may be quite simple, but they do evoke the ‘retro’ look that most people appreciate.

And you can flip a menu setting to display days, months, years in Japanese:

There are also some ‘random’ screens that add in a bit of dynamic visual entertainment:

  • Random number screen
  • Random letter sequence screen
  • Random four letter word screen (clean words only, by default!)
  • Random phrase screen (the phrase list is typically customized to a theme)

And of course the mesmerizing Timedrops screen:

Themed Screens and Features

… These themed features were developed more recently, and can be added for a small fee to help cover development costs!

Astroclock (Sidereal Time)

External XY input

OscilloTerm (serial terminal)

Oscilloblock (lego)

Metropolis

Aftershock Clock (Earthquake display)

Unbirthday Clock

War Games

Logo screens

Over the years many folks have requested that I render custom logos in Circle Graphics. Here are some examples:

“Seasonal Treats”

Up next are some fun, mildly interactive animation features. Not exactly screens per se, these animations pop up after a predefined period of inactivity – but only during certain months of the year. Can you guess which months?

Boo!
Santa in your Clock!

Menu screens

There are far too many configuration menu and test screens to present here. Fiddle to your heart’s content!



Q. How are screens switched?

Screens are switched simply by rotating the control knob in one direction or other.

There is also a configurable auto-switch feature; the screen is changed every 90 seconds in a predefined order (with the exception of some animation screens). The display time is configurable, and the auto-switch feature can also be turned off for those who prefer to switch screens manually.

Q. How are screens selected & configured?

Customers can request screens to include and/or specify the switching order. The configuration is done here in the lab before clocks are delivered.

Oscilloclock also provides a firmware upgrade kit, which allows the customer to upload a revised version of the firmware into the clock themselves. Using this, updates to screens and other features can be uploaded without shipping the clock back to the lab.

Q. What is the process for rendering a custom screen or logo?

We typically prepare a mock-up based on the customer’s description, sketch, or image file. This is tweaked as needed until the screen looks just right to the customer.



Like what you see? Contact me!

Connect !!

These days, just about everyone has an old oscilloscope lying around. You know, an old, dusty, derelict scope handed down from Grandpa (or Grandma). Well, [Paul] had something even better – an old Tektronix 602 X-Y Monitor! Could an Oscilloclock Control Board drive this vintage beauty? Absolutely. Could I make an aesthetically pleasing case? Definitely. How about time sync via WiFi? Stock standard!

Presenting the Oscilloclock Connect:

Here’s what it looks like plugged in to my fabulous old Tektronix 620 monitor:

And why not have a pair of Connects drive a Tek 601 and 602?

The Build

The main component of the Connect is, of course, a standard Oscilloclock Control Board. As usual, all 121 parts on Paul’s board were individually mounted and soldered by hand. The board then was programmed and underwent rigorous inspection and testing. Finally, the board was cleaned to remove flux and renegade flecks of solder, and sprayed with HV coating for humidity protection and – arguably more importantly – to give it its glorious sheen.

The case was custom-made and professionally machined right here in Japan from 6mm-thick sheets of pure cast acrylic (not extruded). This is an extremely transparent, hard, high grade acrylic – and Oscilloclocks deserve nothing less!

The case was sprayed with a special acrylic cleaner and static protection solution, before fitting the various components. Naturally, every part was cherry-picked, right down to the three BNC connectors – they needed an aesthetically pleasing colour, but they also had to have a shaft long enough to mount through 6mm-thick acrylic!

Finally, the physical interface! The knob was chosen for its perfect finger-fit and delicate aluminium/black tones, which gently contrast with the rest of the unit.

The Compatibility Crisis

Over the years, many folks have observed that the scope at hand has an “X-Y mode”, and asked if they could just ‘plug in’ an Oscilloclock Control Board. “Is it compatible?” Unfortunately, the response has usually been disappointing.

You see, creating figures and characters with Circle Graphics relies on the scope’s ability to turn the beam on and off at split-second intervals. This feature is called a “Z-axis input”. While many scopes from the 80’s and beyond do sport such an input, there are two common limitations:

Limitation 1: AC-coupled Z-axis inputs

Capacitive coupling – effective at isolating the input from cathode potential (-1260V !)

The input is connected to the CRT’s grid or cathode circuit via a capacitor. This is a low-cost, effective way to isolate the (usually) very high negative voltage of the grid circuit from the input.

The problem here is that the capacitor, by its very nature, removes the edges from the pulse. The controller is no longer able to control the beam on/off timing, and you end up with uneven blanking across the segments, as shown in the screenshot at right.

Depending on the values of the capacitor and the surrounding resistors, the symptoms may not be severe. However, the best way to resolve this problem (while still keeping the oscilloscope’s original circuit intact) is to insert an isolated DC blanking amplifier directly in series with the grid (or cathode). See the Kikusui 537 Oscilloclock for an example of this.

LIMITATION 2: INSUFFICIENT BLANKING AMPLIFICATION

Most oscilloscopes tend to require at least +5V on the Z-axis input to noticeably blank the beam. The Connect, however, is only capable of delivering +2.5V. It works just fine if you set the scope’s Intensity control very low, but as you increase intensity, the blanking quickly becomes ineffective.

Below we have a beautiful Japanese YEW (Yokogawa Electric Works) 3667 storage scope. The left shot is misleading due to the camera exposure; the displayed image is actually extremely dim. The right shot shows the same* image with the intensity control increased – the image is bright, but there is no blanking!

* Astute readers will observe that the time is significantly different between the two shots. This is a result of the WiFi NTP sync kicking in right in the middle! More (or less) astute readers may also notice that the scope’s trace rotation is not adjusted very well…

Of course, it would be a simple matter to incorporate a pre-amplifier for the Z-axis, which would solve this problem. This will be introduced with the next Control Board revision!


Like what you see?

Nothing brings more joy than connecting this bundle of usefulness into a woefully unused old oscilloscope or X-Y monitor. If this is of interest to you, visit the Availability page for more information, and of course see the Gallery for other unique creations!

War Games on an Oscilloclock!

As I’ve hinted before, your friendly Oscilloclock gang is entirely pacifistic. We abhor the thought of actual military activity in this modern day and age. BUT we love games just as much as anyone – and we also love light-hearted movies with happy endings!

So when [Ian] (of Bunker Club Clock fame) came up with the idea of a feature based on the iconic 1984 flick “War Games“, I pounced on the chance!

Check out my YouTube channel to see this and other videos in HD!

Now, this may look like a simple animation. But Ian’s Oscilloclock is powered by a tiny processor with minimal specifications, and 100% of the code is written in assembly language. Implementing this baby in assembly and keeping within just 3K of RAM was quite an accomplishment!!

About the host clock

The gorgeous model shown here is a painstakingly-retrofitted Heathkit CO-1015 Engine Analyzer. It’s the perfect play-toy for any serious motor-head who grew up during the Cold War!

First up on the custom build list is the original meter fitted with amber LED lighting and ticking audibly each second. (And yes, the tick intensity can be easily adjusted.)

Next up, there is the optional External X-Y input feature. Normally, this is used for plain and simple Lissajous figures like the below…

… but by tweaking some settings, we can get some segments of Jerobeam Fenderson’s incredible Oscilloscope Music Kickstarter video to display quite nicely!

Peeking inside the Engine Analyzer Oscilloclock is also a must-do! Not only is this visually appealing, but you also get a significant olfactory kick from the sweet smell of vintage electronic components…

Attractive Oscilloclock boards and cabling, neatly tucked away

The original circuit is completely bypassed – but still looks awesome!

Tech Talk – Strategies, Maps, and Missiles

The War Games feature uses the Oscilloclock’s Sprite Engine module to display the world map and up to 9 missiles when the W.O.P.R. system is simulating various war strategies.

32 of the 130+ strategies seen in the movie are implemented. For each strategy, a random number of missiles are launched along a predefined Primary trajectory, followed by a random number of missiles along a predefined Retaliatory trajectory. If any of the 9 missiles remain, they are launched along randomly selected (but predefined) trajectories.

Trajectories are predefined because computing them using 8-bit arithmetic would consume a huge number of cycles! At least, a small amount of randomness is added to the launch position and velocity parameters at run-time, to make things more interesting.

As the simulation progresses through the strategies, the speed of the launches increases and the delay between launches decreases. This gives a similar effect to that in the move, where WOPR moves through strategies at warp speed until it realises that there is no winning this game…

A Joint Effort

Creating a huge number of realistic trajectories (68 in total), translating start and end X and Y coordinates from latitude and longitude into the Oscilloclock’s Cartesian plane was a task of mind-blowing proportions! Here we see our 2nd junior technician eagerly earning his room and board.


Like what you see?

Are you a petrol-head? You need an Engine Analyzer ticking over at your bedside or in your office! Were you brought up during the Cold War, perhaps in the Soviet Union or in the US? Get the War Games feature and fry the world safely! Contact me if you like what you see.

(Disclaimer: Oscilloclock.com hopes that no-one is offended by the deliberately light-hearted tone of this post, in referring to the decidedly serious topic of nuclear warfare.)