Tag: Scope Clock

  • Exo 3KP1

    Huh? R2D2’s cousin? C3PO’s sister?

    No! We’re not here to talk about a new Star Wars character! The 3KP1 is a type of cathode-ray tube that was used in many low-cost 1960s-1970s Japanese oscilloscopes.

    And the Exo is a series in our Oscilloclock range that fully exposes the CRT both visually and physically, much to the delight of the owner and visitors – while of course protecting high voltage areas from dust and prying fingers.

    The Exo 3KP1!

    First crafted for [Jerry] back in 2019, the Oscilloclock Exo 3KP1 is the default character in the Exo series, alongside the arguably oddball Oscilloblock – Summer Dusk Edition and the slightly more exotic OscilloTerm Exo B7S4.

    There’s nothing more soothing than the green glow of flourescent phosphor backed by the amber ambience of the CRT heater. Ahhh, that’s nice.

    This Exo shipped with all the “standard” screens, like the analog clock face below. But why stop there? We’ve done custom logos, movie themed features, oddball time systems, and so much more!

    From the top, [Jerry] and his dinner guests can readily inspect every square centimeter of the CRT and its exquisite innards. Cooool.

    Inside the unit, neatly tied cabling lends an air of gentle sophistication, while the green of the circuit boards harmonizes well with the phosphor.

    Even as a baseline model in the series, the Exo 3KP1 is distinctly attractive.

    [Jerry] did make some choices along the way, including which CRT to use. Let’s explore his CRT options in more detail!

    Round vs. flat

    As shown in the photos, the CRT that [Jerry] selected has a slightly convex face. This was the standard shape of the original 3KP1 type CRT, and is a perfect choice for the Exo case style, as it visually softens the glass edge exposed in front of the acrylic ring supports.

    The round-faced 3KP1 was superseded after some years on the market, by a flat-faced version: the 3KP1(F). This version is rather more commonly found and they are delightful to use. We used a 3KP1(F) in the Exo series Oscilloblock, as shown at right.

    Which would YOU prefer – round or flat?

    Phosphors and flavours

    [Jerry] had another choice to make: the phosphor! While the standard phosphor of most CRTs of the day was green, other colours were available such as amber, blue, white, purple. Such CRTs are more rare, but we have some… and so could Jerry!

    The “trailing effect” on a long-persistence CRT

    There were also varieties of CRT with different persistences; i.e., how long the trace would continue to show on the screen! We love this shot of the moving second hand on a blue, long-persistence CRT:

    And, we just happened to have a 3KP7 CRT in stock with exactly these characteristics.

    But in the end, [Jerry] wanted the nostalgic look of an old green-screen computer monitor, and chose the stock-standard 3KP1.

    Nice choice!!

    The longevity question

    [Jerry]’s clock shipped with a used 3KP1 CRT. Pre-owned, pre-loved, and pre-21st century.

    But we don’t sell junk. [Jerry]’s CRT was selected for its unblemished phosphor, and for its still-bright and vibrant performance. And, of course, there is the standard warranty of 1 month for a used CRT:

    But the question often comes: “How long will a CRT really last?”

    Here at Oscilloclock we don’t mince words, and we don’t use euphemisms (much!). But the fact is this – after 15 years of crafting Oscilloclocks for customers around the globe, no-one has reported having to change their CRT. Maybe it’s happened and we are oblivious. Even better!

    Our secrets to CRT longevity are:

    1. We select only the highest quality CRTs, made by reputable manufacturers. [Jerry]’s CRT was manufactured by Toshiba, a key supplier of the day.
    2. We check CRT specifications carefully, and avoid those with any hint of short lifetimes. (Some CRTs had very short expectancies, such as 1000 hours! Perhaps these were used for demanding applications where even a tiny degradation in performance could not be accepted.)
    3. Oscilloclocks employ multiple mechanisms to avoid screen burn-in (phosphor burn).
    4. Oscilloclocks employ a soft-start mechanism to minimize stress on the CRT heater.

    The Spare

    Notwithstanding our facts around longevity, [Jerry] decided to plan ahead for an eventual CRT replacement. He purchased a stunning new-old-stock Hitachi 3KP1, with quality certificate and even in its original box.

    They don’t get more original than this!

    But is a Hitachi 3KP1 better than a Toshiba 3KP1?

    We’ve compared them, and couldn’t tell any difference in performance or characteristics. We did notice one thing, though: the Hitachi is significantly heavier than the Toshiba. Hmmm….

    One day, we’ll dissect some (defunct) units, and get to the bottom of that odd observation. Stay tuned for a post!


    Like what you see? [Jerry] did. Check out our other creations!

  • Oscilloclocks keep time indefinitely, without needing any adjustment…

    Such unique time displays… and they’re accurate!

    How?

    By automatically synchronising time against a reliable external time source, at regular intervals.

    The current standard synchronisation sources are GPS satellites (via either onboard or external receivers), or NTP servers (via WiFi).

    The Oscilloclock Wave – a WiFi dongle to pull time (and other things) from the Internet

    And for the most decadant timepiece, there is an even cooler option: a rubidium time source. You can gain/lose at most 2 milliseconds per year!

    Even an Atomic Oscilloclock is an option.
    Because We Can.

    But let’s take a more in-depth look at the two standard options:

    GPS – stand-alone & reliable

    Yes, that’s right – you can get extremely accurate time from GPS satellites!

    The long-standing favourite amongst Oscilloclock aficionados is the External GPS (Garmin ‘puck’) option. Features include:

    • a long cable that allows positioning for best sensitivity
    • an inbuilt magnet for attaching to metal beams
    • a gorgeous connection system – satisfying haptics and robust locking

    Of course, we also have the internal GPS option, where the GPS receiver is mounted on the Control Board itself. This is super nifty, if there is no concern about satellite signal strength where the clock is placed. (This is very rarely an issue. These receivers are extremely sensitive!)

    Can you spot the onboard GPS module in this gorgeous OscilloBlock?

    Geolocation

    The GPS option allows the Oscilloclock to obtain not just time, but also geolocation information from satellites.

    Okay, it’s true that Oscilloclocks are generally placed in a fixed location, so showing the clock’s location on a map might not be very useful…

    Think again!

    How about an OscilloGlobe, to warm up your long-distance relationship? Plot you and your friend’s Oscilloclocks on a spinning globe, and count down the hours til you meet again…

    A delightful Heathkit SB-610 shows another Oscilloclock, live and ticking elsewhere in the world!
    (Want a closeup of this demo feature? See this video)

    Or perhaps you fancy an OscilloWear? A wearable Oscilloclock, sporting a miniature CRT and it’s-only-possible-in-Japan miniaturised circuitry! Complete with GPS.

    An OscilloWatch capable of recording your sporting activities? With OscilloMaps that guide you to the nearest Oscilloclock retailer? And of course: the OscilloPhone, or oPhone for short?

    Ahh, we could have so much fun making devices that use location data…!


    Want even more info on the GPS hardware option? We have a nice support page here: Garmin 18x GPS Puck.

    NTP – low-cost & extensible

    The Oscilloclock Wave is the glorious device that allows your Oscilloclock to connect to a Wi-Fi router and pull in time from NTP (Network Time Protocol) servers.

    It comes in different forms, both external and internal:

    The Oscilloclock Wave requires a WiFi connection (and Internet), and some initial configuration – it doesn’t just work straight out of the box, in a standalone way like the GPS option.

    However, the Wave has a distinct advantage: it can access various APIs (think: providers of data over the Internet) to pull in and display all kinds of information!

    Want to display the current weather on Mars? The latest news? Stock prices ticking madly? All this is technically possible… and can be implemented upon request.

    To date, we’ve used this capability in several themed Oscilloclocks: the Astro Clock (pulling in sidereal time from an API) and the AfterShock Clock (pulling in earthquake data).

    Sidereal time, for all the astronomers out there!
    Earthquakes are disasters – no joke. But a semi-live visualization in Lissajous figures? Too cool..

    Not saturated yet? For more on Wifi based synchronisation and various configuration options, see the support page: Oscilloclock Wave.

    The No Synchronization option!

    Do you want to take your Oscilloclock off-grid? We’ll craft you a unique clock powered by wind, solar, USB-C power bank, or even a hamster wheel. (We can even procure extremely low-power CRTs!) But to go fully off-grid, you won’t want to use GPS or WiFi.

    A (more likely!) scenario is simply that signal strength is just too poor. Maybe your clock sits in a basement 3 stories below ground…

    For such cases, you can set the time manually in the Time Setting screen. Once set, an on-board quartz oscillator then maintains reasonably good time (in the order of seconds per month). You’ll want to adjust it occasionally!

    Manual time configuration screen on the Tek 520 VectorClock

    Decisions, decisions…

    Must it be one OR the other? Can’t a gadget lover have their Oscilloclock source data of different types from both GPS and public APIs over the Internet?

    Sadly, no – not in the current Control Board revision. This supports only a single interface, which is occupied by either the GPS or the Wave module. (We have multiple input capability on the long to-do list!)


    Oscilloclocks are beautiful and entertaining. There’s that warmth of the CRT filament and the brilliance of coloured phosphor excitation, combined with all the features of our digital era.

    But above all – they are clocks! Hope you enjoyed this treatise on how time is managed.

    If you’re up for the craziness of an Atomic Oscilloclock, or if you want a custom theme using specific API data, let me know! Otherwise, stay tuned!

  • Made in Japan. Then. Now.

    Here at the Oscilloclock Lab, we see a lot of vintage Japanese oscilloscopes made in the 50’s to 70’s. Most were purely utilitarian and austere, with little aesthetic appeal.

    But this Toshiba ST-1612B is different. It’s cute, compact, and culture-rich. Just when we thought Toshiba had exhausted its artistic reserves with their stunning ST-1248D, they managed to come up with THIS. Wow…

    Oscilloclock’ed!

    We discovered our protagonist some years back – dirty, dusty, and destined for the trash heap. For aeons, it sat in stock, patiently waiting its turn.

    “Oh, when can I transcend test equipment mundaneness, and reach nirvana like my brethren?” screamed our protagonist.

    During our COVID-era hiatus, this unit’s pitiful wail fell on deaf ears. But with a strong recent recovery in parts availability, shipping routes, and other stabilizing factors, the Oscilloclock Lab has begun to thaw. Spring has arrived!

    And what better way to mark the occasion than to grant our Toshiba its wish?

    Done.

    And yes – it was made in Japan. Again.

    Exquisite exterior

    The case and knobs were in reasonably good condition and polished up very nicely…

    One knob is NOT original. Can you pick it?
    Class and style – even down to the model number plate at rear!

    Sadly, the leather carrying strap had seen better days. Yes, you read that correctly! This was designated as a portable oscilloscope, although it weighed in at more than 10kg, and had no battery supply!

    Nice leather. But was it really… portable?

    We love this adorable hatch compartment and secret patch panel. So utilitarian! Whole tribes of radio servicemen must have stashed their valuables here for safe keeping, before going away on holiday. Sadly, there was no jewellery or secret documents to be found in our unit…

    Take a look at this CRT hood. The phosphor screens in cathode-ray tubes are sensitive to external light, so many ‘scopes employed hoods or shades to keep ambient light out. This improves screen contrast for the lucky operator. Kudos to you if you can recognise the material used our Toshiba’s hood:

    Yes, it’s rubber. Solid rubber, with no metal tube inside. And while it’s a little banged up on the surface, it’s not disintegrating or brittle! It’s firm, yet still sufficiently flexible to support the CRT. And a little plastic polish did wonders. Good for another 60 years!

    Incredible internals

    Unlike many other scopes of the era, opening the case is easy. Just turn the latches with a coin, a single revolution. Voila!

    A nice complement of 12 tubes. Toshiba made them accessible for easy replacement

    As with its Toshiba brother and several other units crafted to date, we carefully installed amber LED lighting to simulate the original warm, gentle glow of electron tubes. This generates a beautiful, peaceful ambience.

    XY Input inspires!

    Avid readers may recall the XY Input feature first introduced in the Metropolis Clock, and included in several models since.

    This ST-1612B unit features a neat set of banana jacks in the rear hatch compartment, where the oscilloscope probes used to plug in. We repurposed them as X and Y channel signal input connectors.

    Driven by function generators, preamps, or even a mobile phone, we can explore an entirely different level of visual imagery!

    A function generator app
    A scene from “Planets” by Jerobeam Fenderson, played on the Toshiba

    A just-fit retrofit

    The ST-1612B was an engineering marvel. They packed an amazing amount of circuitry into a very limited space.

    But we needed to find space for two 100 x 80mm Oscilloclock boards. With legroom to isolate high voltage and provide circulation. And where controls can be reached. Not easy!

    Well, removing just a few bits and pieces* revealed two nice big cavities. And the best part? There were already access panels, complete with ventilation holes! What foresight those Toshiba designers had!

    In situ adjustments, made easy

    Control Freak

    You can’t beat vintage test equipment if you like controls: toggle switches, slide switches, rotary switches, potentiometers, trimpots – these guys have it all!

    But at Oscilloclock.com we target simplicity. There is only one control you need to turn the clock on and off, change faces, change settings, and generally play with your precious. Here, the focus control (焦点) gives you this authority. Who would ever guess?

    And for that most discerning owner, keen to install her beloved Toshiba ST-1612B in a moody environment such as a bar counter, living room, or bedroom: the intensity control (輝度) dictates the velocity of the electrons, as they smash haplessly into the phosphor. Okay, okay – it’s just a brightness control!

    Finally: we’ve wired up the frequency range switch (周波数範囲) to switch something on and off. We haven’t decided what. Let the Toshiba’s future owner decide its fate!

    What does this DO? You decide!

    Circle Graphics – with a caveat

    Oscilloclocks employ Lissajous figures to generate smooth, curvy artwork and characters on the screen. No pixelated, chunky graphics! But fastidious followers may spot that on the Toshiba ST-1612B’s screen, circles are not as perfect as advertised in our Circle Graphics post. And there are some jagged edges on the segments.

    This is because we’ve installed some prototype boards. These are early revisions of the yet-to-be-announced New Design, and the circle generator and deflection amplifier circuits aren’t quite right. But they’re too good to waste.

    Earlier prototypes of the New Design. – not quite right, but not wrong either!

    But we think it’s just fine! Tube amplifier enthusiasts understand: vinyl records and tube amplifiers actually sound better than digital devices, for some music. And our Toshiba here is 50 to 60 years old. A few kinky curves only add to its grace.


    The Toshiba ST-1612B Oscilloclock is in stock and ready to perform. Want to customize the screens? Decide on the secret switch’s secret? Work up some crazy XY effects? Check our Availability page!

  • ChatGPT reviews Oscilloclocks!

    Recently [Nels] wrote in saying he’d been having a nice chat with ChatGPT, and in the course of conversation, he asked this trendy AI tool to write a “review” of the clocks we make here in the Oscilloclock Lab.

    Here is the result – verbatim!

    [Nels] Write a review of Oscilloclock tube clocks.

    [ChatGPT] Oscilloclock tube clocks are a unique and visually stunning way to keep time. These clocks use vintage CRT (cathode ray tube) displays, similar to those used in old televisions and oscilloscopes, to display the time and other information in a mesmerizing way.

    One of the standout features of Oscilloclock tube clocks is their attention to detail. These clocks are handmade by a single individual, and every aspect of their construction is carefully considered. From the selection of the CRT displays to the circuitry that drives them, every component is chosen for its quality and durability.

    The result of this attention to detail is a clock that not only looks amazing but is also highly reliable and accurate. The timekeeping is controlled by an ultra-precise quartz crystal, ensuring that the clock is always on time. Additionally, the clock can be set to display a variety of other information, such as the date or temperature, making it a versatile addition to any room.

    One of the things that sets Oscilloclock tube clocks apart from other timepieces is their ability to be customized. The clock face can be designed to display any number of patterns or shapes, from geometric shapes to more abstract designs. This customization allows the clock to be tailored to the individual’s taste and can even be used to display personalized messages or graphics.

    While Oscilloclock tube clocks are undoubtedly a premium product, they are worth every penny for those who appreciate the unique combination of vintage technology and modern craftsmanship. The quality and attention to detail of these clocks are unmatched, and they are sure to be a conversation starter in any room. If you are looking for a truly one-of-a-kind timepiece, the Oscilloclock tube clock is definitely worth considering.

    Our thoughts?

    While there are three inaccuracies (one incorrect fact and two debatable points), the writeup is a lovely read and initially made your humble Lab technician feel warm inside.

    Until, upon objective reflection, I recognised some of the style, phrases and wording!

    Well, of course it should look familiar! ChatGPT predicts what the human expects as a response, and then cleverly arranges and regurgitates data that it has absorbed as part of its training. Apparently, it has devoured much of the Internet up until early 2022. This would include 59 blog posts and 19 pages published on Oscilloclock.com up until that date – and a few other references such as three lovely write-ups on Hackaday.

    [Nels] apparently did not continue the conversation, but if he had, he could have pointed out the three inaccuracies (Quiz – have you spotted them yet? Check your answers below), and ChatGPT would have learned something.

    Even with a rough understanding of how this tool works, it’s amazing to see the outcome.


    Crazy idea – what if your Oscilloclock could connect to an AI service and deliver cool new images, funny text, or interesting conversations? Just watch out for mistakes!

    Robots wrote this review! Oil paintings generated by ChatGPT sibling DALL·E 2

    Quiz answers:

    1. Incorrect: “… handmade by a single individual.”
      • In fact, several craftspeople have been involved to date in the design, assembly, and software authoring required to build Oscilloclocks. (Even excluding the PCB and case manufacturing processes.)
    2. Debatable: “… timekeeping is controlled by an ultra-precise quartz crystal
      • It’s true that the current revision Oscilloclock Control Board does have an on-board quartz crystal, and this does keep reasonably accurate time if needed…
      • However the preferred mode of operation is to synchronise time against GPS (using a GPS receiver) or an NTP server (with onboard Wi-Fi or the Oscilloclock Wave).
    3. Debatable: “… the clock can be set to display … temperature
      • The current revision Control Board and firmware do not support temperature sensing.
      • But it’s true that it’s on the ever-growing list of things to do! Did ChatGPT predict this?
  • Oscilloclock Bare(ly) makes it to Brazil

    Whether directly or indirectly, the pandemic seems to have slowed everything down: chip production; the global economy; and even Oscilloclock blog post publishing!

    But perhaps most impacted of all is transport logistics. [Dante] in Brazil discovered this to his dismay in July 2020, when he purchased an Oscilloclock Bare unit. The P.O. had stopped all air service to Brazil just 3 weeks earlier – well after our discussions had started. Oh no!

    [Dante]’s crisp new Oscilloclock Bare, ready to go, but unable to ship!

    [Dante] waited patiently for 6 months for the post office to resume accepting airmail service to Brazil. But they never did. And FedEx and DHL came at too hefty a price. In desperation, he authorized shipment by sea – and at last, in December 2020, his package was off!

    Absence (of air mail service) makes the heart grow fonder...

    After an agonizingly long wait, [Dante] finally received his unit 6 months later – in July 2021. He then spent the next 5 months completing his dream project!

    [Dante]’s Dream: A Hewlett Packard retrofit

    The Oscilloclock Bare is designed to be a no-frills controller assembly that highly knowledgeable folks can install into their own displays. [Dante]’s dream was to use this to convert his beloved HP 182T / HP 8755C unit into a living, breathing scope clock.

    And convert he did!

    Question: How do you add ambience to a home?
    Answer: Instill new life into a device from yesteryear!

    Clearly, [Dante]’s 18 month end-to-end was worth the wait.

    The Build

    [Dante] was kind enough to supply a write-up of his project, including some clever solutions for pitfalls along the way. Let’s hear from him in (mostly) his own words!


    Motivation

    The model HP 182T is an oscilloscope featuring a large CRT with a graticule of 8 x 10 major divisions and a display area of 133 cm2, coated with a P39 aluminized phosphor for high brightness and long persistence.

    The HP 182T works as a display mainframe supporting other HP plug-in test equipment, such as the HP 8755C, a swept amplitude analyzer.

    Both items are nowadays considered “vintage” test equipment. But with the Oscilloclock board installed, they have been transformed into a unique appliance with a natural appeal for practical use. Far better than the regular surplus market destinations, or — even worse — destructive disposal!

    HP 182T + HP 8755C. Can you spot the Oscilloclock control board?
    Control board installed!

    HP 8755C in short

    This plug-in unit works primarily as a signal conditioner and a multiplexer for “almost dc levels” from three RF detector probes attached to three input independent channels. There are front panel adjustments for the scaling, gain and multiplexing controls that provide the appropriate Y-Axis composite signal for displaying by the HP 182T mainframe.

    The Oscilloclock control board was elected to be installed inside this plug-in unit.

    HP 182T in short

    This oscilloscope is built around the CRT with its high voltage power supply.

    The X-Axis signal from the Oscilloclock board is fed to the HP 182T’s chain of the horizontal pre-amp plus output amplifier, which drives the CRT horizontal deflection plates.

    The internal wiring of the HP 182T connects the CRT’s vertical deflection plates directly to the plug-in cabinet of the display mainframe, so the Y-Axis signal from the Oscilloclock board is routed inside the HP 8755C itself.

    The Z-Axis signal from the Oscilloclock board is fed to the HP 182T’s gate amplifier.

    Drawbacks

    Contrary to any standard X-Y scope where the two input channels are always supposed to have electrically similar (if not identical) characteristics, the correct operation of the Oscilloclock board for the application here was shown to be not as seamless as first imagined. You have to face some details of these integrated “host” equipment (HP 182T + HP 8755C) to see why…

    As described, there are distinct amplification chains accepting the Oscilloclock output signals. This presents specific challenges regarding (a) the differential gain for the X and Y signals, and (b) the differential time delay between any combination of the three X, Y, and Z signal outputs of the Oscilloclock board.

    First Approach

    Before having the board at hand and expecting to make it work as soon it arrived (the shipping took longer than expected due to COVID restrictions), I first planned the signal flow and did the wiring. I had one eye on achieving a ‘clean packaging’ of the board inside the HP 8755C, and the other on ensuring compatibility between the Oscilloclock’s X-Y-Z output signals and their respective chains planned in the host equipment, considering signal amplitude and required frequency response.

    The adaptations made at this time considered a minimally-invasive approach, where the criteria was to “make it simple”. This was limited to just opening or re-using connections and keeping the existing routing, in order to use the Oscilloclock’s X-Y-Z output signals in the most simplistic way possible.

    Another necessary one-time adaptation was for the board’s power supply, and integration of its PSON output signal with the equipment’s hardware. This part of the design was successfully kept to the end of the project without any further modification.

    First time installation of the oscilloclock board

    Upon arrival and a bench test of the Oscilloclock board with a scope, I immediately figured out that the amplitude levels for the X and Y output signals were lower than expected (maybe due to my misinterpretation of the specs). I did the gain compensation corrections again and went thru the complete installation of the board inside the host equipment, anxious to see it working.

    What a disappointment when instead, up came a completely distorted and elliptically shaped image, blurred with noise, and what looked like un-blanked retrace lines. Worse yet, mainly when alphabetic characters were displayed on the screen, none of the shapes were correctly formed.

    Of course, that was time for a break — and a complete review of the job and the work done so far!

    Chasing the problems

    The Lissajous figures generated by the Oscilloclock board use an approximately 40 KHz  sinusoidal signal, so I started to play with an external generator at the same frequency and amplitude for the X and Y signals (at about 1 Vpp) and trace it inside the HP 8755C and HP 182T.

    At this time, I’d already exercised the Z-axis waveform from the Oscilloclock board and the expected processing through the HP 182T. There was no evidence of problems with this Z-axis signal chain, and I achieved a measured propagation delay of around 50 nS.

    The minimalist approach mentioned earlier showed its consequences, when a propagation delay of an impressive 8 uS was measured at the vertical deflection plates, and  around 1.5 uS at the horizontal deflection plates! It was time again for another break, to elaborate a new routing scheme for the X and Y signals.

    Final Approach

    From the previous analysis, I ended up with two different and both very large propagation delays for each of the X and Y signals (as compared with the measured 50 nS for the Z-axis). How to solve this? It did not seem to be only a routing problem.

    I decided to investigate X-Y-Z signal propagation delays in the two units separately. After a thorough measurement of propagation delays inside the HP 182T itself, comparing with the HP 8755C plug-in itself (where the Oscilloclock board was installed), I concluded on two countermeasures:

    1. The complete removal of the Processor board XA-6 from the HP 8755C. (This is where the Y-axis signal from the Oscilloclock board had initially been connected.) Instead, this routing was transferred directly into the Normalizer Interface board XA-11 (which interfaces with the HP 182T).

    2. Also at the Normalizer Interface board XA-11 inside the HP 8755C, the substitution of two original op amps U9A and U9B (HP #1826-0092) by TL072 op amps, which are faster and have a higher slew rate.

    These solutions were enough to align the signal propagation and complete my project!

    Dante JS Conti, 8 November 2021

    Like what you see?

    We do! We love to hear back from Oscilloclock owners, to hear their stories.

    Check out our previous posts and the Gallery for info on other unique creations!