Tag: Scope Clock

  • Oscilloclock Bare(ly) makes it to Brazil

    Whether directly or indirectly, the pandemic seems to have slowed everything down: chip production; the global economy; and even Oscilloclock blog post publishing!

    But perhaps most impacted of all is transport logistics. [Dante] in Brazil discovered this to his dismay in July 2020, when he purchased an Oscilloclock Bare unit. The P.O. had stopped all air service to Brazil just 3 weeks earlier – well after our discussions had started. Oh no!

    [Dante]’s crisp new Oscilloclock Bare, ready to go, but unable to ship!

    [Dante] waited patiently for 6 months for the post office to resume accepting airmail service to Brazil. But they never did. And FedEx and DHL came at too hefty a price. In desperation, he authorized shipment by sea – and at last, in December 2020, his package was off!

    Absence (of air mail service) makes the heart grow fonder...

    After an agonizingly long wait, [Dante] finally received his unit 6 months later – in July 2021. He then spent the next 5 months completing his dream project!

    [Dante]’s Dream: A Hewlett Packard retrofit

    The Oscilloclock Bare is designed to be a no-frills controller assembly that highly knowledgeable folks can install into their own displays. [Dante]’s dream was to use this to convert his beloved HP 182T / HP 8755C unit into a living, breathing scope clock.

    And convert he did!

    Question: How do you add ambience to a home?
    Answer: Instill new life into a device from yesteryear!

    Clearly, [Dante]’s 18 month end-to-end was worth the wait.

    The Build

    [Dante] was kind enough to supply a write-up of his project, including some clever solutions for pitfalls along the way. Let’s hear from him in (mostly) his own words!


    Motivation

    The model HP 182T is an oscilloscope featuring a large CRT with a graticule of 8 x 10 major divisions and a display area of 133 cm2, coated with a P39 aluminized phosphor for high brightness and long persistence.

    The HP 182T works as a display mainframe supporting other HP plug-in test equipment, such as the HP 8755C, a swept amplitude analyzer.

    Both items are nowadays considered “vintage” test equipment. But with the Oscilloclock board installed, they have been transformed into a unique appliance with a natural appeal for practical use. Far better than the regular surplus market destinations, or — even worse — destructive disposal!

    HP 182T + HP 8755C. Can you spot the Oscilloclock control board?
    Control board installed!

    HP 8755C in short

    This plug-in unit works primarily as a signal conditioner and a multiplexer for “almost dc levels” from three RF detector probes attached to three input independent channels. There are front panel adjustments for the scaling, gain and multiplexing controls that provide the appropriate Y-Axis composite signal for displaying by the HP 182T mainframe.

    The Oscilloclock control board was elected to be installed inside this plug-in unit.

    HP 182T in short

    This oscilloscope is built around the CRT with its high voltage power supply.

    The X-Axis signal from the Oscilloclock board is fed to the HP 182T’s chain of the horizontal pre-amp plus output amplifier, which drives the CRT horizontal deflection plates.

    The internal wiring of the HP 182T connects the CRT’s vertical deflection plates directly to the plug-in cabinet of the display mainframe, so the Y-Axis signal from the Oscilloclock board is routed inside the HP 8755C itself.

    The Z-Axis signal from the Oscilloclock board is fed to the HP 182T’s gate amplifier.

    Drawbacks

    Contrary to any standard X-Y scope where the two input channels are always supposed to have electrically similar (if not identical) characteristics, the correct operation of the Oscilloclock board for the application here was shown to be not as seamless as first imagined. You have to face some details of these integrated “host” equipment (HP 182T + HP 8755C) to see why…

    As described, there are distinct amplification chains accepting the Oscilloclock output signals. This presents specific challenges regarding (a) the differential gain for the X and Y signals, and (b) the differential time delay between any combination of the three X, Y, and Z signal outputs of the Oscilloclock board.

    First Approach

    Before having the board at hand and expecting to make it work as soon it arrived (the shipping took longer than expected due to COVID restrictions), I first planned the signal flow and did the wiring. I had one eye on achieving a ‘clean packaging’ of the board inside the HP 8755C, and the other on ensuring compatibility between the Oscilloclock’s X-Y-Z output signals and their respective chains planned in the host equipment, considering signal amplitude and required frequency response.

    The adaptations made at this time considered a minimally-invasive approach, where the criteria was to “make it simple”. This was limited to just opening or re-using connections and keeping the existing routing, in order to use the Oscilloclock’s X-Y-Z output signals in the most simplistic way possible.

    Another necessary one-time adaptation was for the board’s power supply, and integration of its PSON output signal with the equipment’s hardware. This part of the design was successfully kept to the end of the project without any further modification.

    First time installation of the oscilloclock board

    Upon arrival and a bench test of the Oscilloclock board with a scope, I immediately figured out that the amplitude levels for the X and Y output signals were lower than expected (maybe due to my misinterpretation of the specs). I did the gain compensation corrections again and went thru the complete installation of the board inside the host equipment, anxious to see it working.

    What a disappointment when instead, up came a completely distorted and elliptically shaped image, blurred with noise, and what looked like un-blanked retrace lines. Worse yet, mainly when alphabetic characters were displayed on the screen, none of the shapes were correctly formed.

    Of course, that was time for a break — and a complete review of the job and the work done so far!

    Chasing the problems

    The Lissajous figures generated by the Oscilloclock board use an approximately 40 KHz  sinusoidal signal, so I started to play with an external generator at the same frequency and amplitude for the X and Y signals (at about 1 Vpp) and trace it inside the HP 8755C and HP 182T.

    At this time, I’d already exercised the Z-axis waveform from the Oscilloclock board and the expected processing through the HP 182T. There was no evidence of problems with this Z-axis signal chain, and I achieved a measured propagation delay of around 50 nS.

    The minimalist approach mentioned earlier showed its consequences, when a propagation delay of an impressive 8 uS was measured at the vertical deflection plates, and  around 1.5 uS at the horizontal deflection plates! It was time again for another break, to elaborate a new routing scheme for the X and Y signals.

    Final Approach

    From the previous analysis, I ended up with two different and both very large propagation delays for each of the X and Y signals (as compared with the measured 50 nS for the Z-axis). How to solve this? It did not seem to be only a routing problem.

    I decided to investigate X-Y-Z signal propagation delays in the two units separately. After a thorough measurement of propagation delays inside the HP 182T itself, comparing with the HP 8755C plug-in itself (where the Oscilloclock board was installed), I concluded on two countermeasures:

    1. The complete removal of the Processor board XA-6 from the HP 8755C. (This is where the Y-axis signal from the Oscilloclock board had initially been connected.) Instead, this routing was transferred directly into the Normalizer Interface board XA-11 (which interfaces with the HP 182T).

    2. Also at the Normalizer Interface board XA-11 inside the HP 8755C, the substitution of two original op amps U9A and U9B (HP #1826-0092) by TL072 op amps, which are faster and have a higher slew rate.

    These solutions were enough to align the signal propagation and complete my project!

    Dante JS Conti, 8 November 2021

    Like what you see?

    We do! We love to hear back from Oscilloclock owners, to hear their stories.

    Check out our previous posts and the Gallery for info on other unique creations!

  • Recently I had an enquiry from [Frank], who had just begun a life-long love affair with scope clocks by purchasing one on eBay. The clock was great – but he felt that the two available screens (simple analogue and digital clock faces) lacked a certain oomph.

    He then stumbled across Oscilloclock.com, and in his smitten state immediately reached out with his number one question: just what screens are available on an Oscilloclock?

    Well, let me save Frank’s time trawling through years of blog posts. Right here in one place are most of the Oscilloclock screens and features created to date.

    Enjoy the show!

    Standard Time Screens

    These stock-standard analogue and digital time screens may be quite simple, but they do evoke the ‘retro’ look that most people appreciate.

    And you can flip a menu setting to display days, months, years in Japanese:

    There are also some ‘random’ screens that add in a bit of dynamic visual entertainment:

    • Random number screen
    • Random letter sequence screen
    • Random four letter word screen (clean words only, by default!)
    • Random phrase screen (the phrase list is typically customized to a theme)

    And of course the mesmerizing Timedrops screen:

    Themed Screens and Features

    … These themed features were developed more recently, and can be added for a small fee to help cover development costs!

    Astroclock (Sidereal Time)

    External XY input

    OscilloTerm (serial terminal)

    Oscilloblock (lego)

    Metropolis

    Aftershock Clock (Earthquake display)

    Unbirthday Clock

    War Games

    Oscilloclock Globe (work in progress)

    Radioactive (work in progress)

    Logo screens

    Over the years many folks have requested that I render custom logos in Circle Graphics. Here are some examples:

    “Seasonal Treats”

    Up next are some fun, mildly interactive animation features. Not exactly screens per se, these animations pop up after a predefined period of inactivity – but only during certain months of the year. Can you guess which months?

    Boo!
    Santa in your Clock!

    Menu screens

    There are far too many configuration menu and test screens to present here. Fiddle to your heart’s content!



    Q. How are screens switched?

    Screens are switched simply by rotating the control knob in one direction or other.

    There is also a configurable auto-switch feature; the screen is changed every 90 seconds in a predefined order (with the exception of some animation screens). The display time is configurable, and the auto-switch feature can also be turned off for those who prefer to switch screens manually.

    Q. How are screens selected & configured?

    Customers can request screens to include and/or specify the switching order. The configuration is done here in the lab before clocks are delivered.

    Oscilloclock also provides a firmware upgrade kit, which allows the customer to upload a revised version of the firmware into the clock themselves. Using this, updates to screens and other features can be uploaded without shipping the clock back to the lab.

    Q. What is the process for rendering a custom screen or logo?

    We typically prepare a mock-up based on the customer’s description, sketch, or image file. This is tweaked as needed until the screen looks just right to the customer.



    Like what you see? Contact me!
  • Connect !!

    These days, just about everyone has an old oscilloscope lying around. You know, an old, dusty, derelict scope handed down from Grandpa (or Grandma). Well, [Paul] had something even better – an old Tektronix 602 X-Y Monitor! Could an Oscilloclock Control Board drive this vintage beauty? Absolutely. Could I make an aesthetically pleasing case? Definitely. How about time sync via WiFi? Stock standard!

    Presenting the Oscilloclock Connect:

    Here’s what it looks like plugged in to my fabulous old Tektronix 620 monitor:

    And why not have a pair of Connects drive a Tek 601 and 602?

    The Build

    The main component of the Connect is, of course, a standard Oscilloclock Control Board. As usual, all 121 parts on Paul’s board were individually mounted and soldered by hand. The board then was programmed and underwent rigorous inspection and testing. Finally, the board was cleaned to remove flux and renegade flecks of solder, and sprayed with HV coating for humidity protection and – arguably more importantly – to give it its glorious sheen.

    The case was custom-made and professionally machined right here in Japan from 6mm-thick sheets of pure cast acrylic (not extruded). This is an extremely transparent, hard, high grade acrylic – and Oscilloclocks deserve nothing less!

    The case was sprayed with a special acrylic cleaner and static protection solution, before fitting the various components. Naturally, every part was cherry-picked, right down to the three BNC connectors – they needed an aesthetically pleasing colour, but they also had to have a shaft long enough to mount through 6mm-thick acrylic!

    Finally, the physical interface! The knob was chosen for its perfect finger-fit and delicate aluminium/black tones, which gently contrast with the rest of the unit.

    The Compatibility Crisis

    Over the years, many folks have observed that the scope at hand has an “X-Y mode”, and asked if they could just ‘plug in’ an Oscilloclock Control Board. “Is it compatible?” Unfortunately, the response has usually been disappointing.

    You see, creating figures and characters with Circle Graphics relies on the scope’s ability to turn the beam on and off at split-second intervals. This feature is called a “Z-axis input”. While many scopes from the 80’s and beyond do sport such an input, there are two common limitations:

    Limitation 1: AC-coupled Z-axis inputs

    Capacitive coupling – effective at isolating the input from cathode potential (-1260V !)

    The input is connected to the CRT’s grid or cathode circuit via a capacitor. This is a low-cost, effective way to isolate the (usually) very high negative voltage of the grid circuit from the input.

    The problem here is that the capacitor, by its very nature, removes the edges from the pulse. The controller is no longer able to control the beam on/off timing, and you end up with uneven blanking across the segments, as shown in the screenshot at right.

    Depending on the values of the capacitor and the surrounding resistors, the symptoms may not be severe. However, the best way to resolve this problem (while still keeping the oscilloscope’s original circuit intact) is to insert an isolated DC blanking amplifier directly in series with the grid (or cathode). See the Kikusui 537 Oscilloclock for an example of this.

    LIMITATION 2: INSUFFICIENT BLANKING AMPLIFICATION

    Most oscilloscopes tend to require at least +5V on the Z-axis input to noticeably blank the beam. The Connect, however, is only capable of delivering +2.5V. It works just fine if you set the scope’s Intensity control very low, but as you increase intensity, the blanking quickly becomes ineffective.

    Below we have a beautiful Japanese YEW (Yokogawa Electric Works) 3667 storage scope. The left shot is misleading due to the camera exposure; the displayed image is actually extremely dim. The right shot shows the same* image with the intensity control increased – the image is bright, but there is no blanking!

    * Astute readers will observe that the time is significantly different between the two shots. This is a result of the WiFi NTP sync kicking in right in the middle! More (or less) astute readers may also notice that the scope’s trace rotation is not adjusted very well…

    Of course, it would be a simple matter to incorporate a pre-amplifier for the Z-axis, which would solve this problem. This will be introduced with the next Control Board revision!


    Like what you see?

    Nothing brings more joy than connecting this bundle of usefulness into a woefully unused old oscilloscope or X-Y monitor. If this is of interest to you, visit the Availability page for more information, and of course see the Gallery for other unique creations!

  • War Games on an Oscilloclock!

    As I’ve hinted before, your friendly Oscilloclock gang is entirely pacifistic. We abhor the thought of actual military activity in this modern day and age. BUT we love games just as much as anyone – and we also love light-hearted movies with happy endings!

    So when [Ian] (of Bunker Club Clock fame) came up with the idea of a feature based on the iconic 1984 flick “War Games“, I pounced on the chance!

    Check out my YouTube channel to see this and other videos in HD!

    Now, this may look like a simple animation. But Ian’s Oscilloclock is powered by a tiny processor with minimal specifications, and 100% of the code is written in assembly language. Implementing this baby in assembly and keeping within just 3K of RAM was quite an accomplishment!!

    About the host clock

    The gorgeous model shown here is a painstakingly-retrofitted Heathkit CO-1015 Engine Analyzer. It’s the perfect play-toy for any serious motor-head who grew up during the Cold War!

    First up on the custom build list is the original meter fitted with amber LED lighting and ticking audibly each second. (And yes, the tick intensity can be easily adjusted.)

    Next up, there is the optional External X-Y input feature. Normally, this is used for plain and simple Lissajous figures like the below…

    … but by tweaking some settings, we can get some segments of Jerobeam Fenderson’s incredible Oscilloscope Music Kickstarter video to display quite nicely!

    Peeking inside the Engine Analyzer Oscilloclock is also a must-do! Not only is this visually appealing, but you also get a significant olfactory kick from the sweet smell of vintage electronic components…

    Attractive Oscilloclock boards and cabling, neatly tucked away
    The original circuit is completely bypassed – but still looks awesome!

    Tech Talk – Strategies, Maps, and Missiles

    The War Games feature uses the Oscilloclock’s Sprite Engine module to display the world map and up to 9 missiles when the W.O.P.R. system is simulating various war strategies.

    32 of the 130+ strategies seen in the movie are implemented. For each strategy, a random number of missiles are launched along a predefined Primary trajectory, followed by a random number of missiles along a predefined Retaliatory trajectory. If any of the 9 missiles remain, they are launched along randomly selected (but predefined) trajectories.

    Trajectories are predefined because computing them using 8-bit arithmetic would consume a huge number of cycles! At least, a small amount of randomness is added to the launch position and velocity parameters at run-time, to make things more interesting.

    As the simulation progresses through the strategies, the speed of the launches increases and the delay between launches decreases. This gives a similar effect to that in the move, where WOPR moves through strategies at warp speed until it realises that there is no winning this game…

    A Joint Effort

    Creating a huge number of realistic trajectories (68 in total), translating start and end X and Y coordinates from latitude and longitude into the Oscilloclock’s Cartesian plane was a task of mind-blowing proportions! Here we see our 2nd junior technician eagerly earning his room and board.


    Like what you see?

    Are you a petrol-head? You need an Engine Analyzer ticking over at your bedside or in your office! Were you brought up during the Cold War, perhaps in the Soviet Union or in the US? Get the War Games feature and fry the world safely! Contact me if you like what you see.

    (Disclaimer: Oscilloclock.com hopes that no-one is offended by the deliberately light-hearted tone of this post, in referring to the decidedly serious topic of nuclear warfare.)

  • Bunker Club Clock

    It’s the 1970’s. The cold war. The U.S. and Russia aim nuclear weapons at each other. How do you prepare for the worst? Why, you build a bunker, of course!

    Today, [Ian] has done just that. Not a real nuclear fallout shelter, of course, but a period-themed bar called the Bunker Club. What better way to face disaster, than over drinks with the mates!

    Ian decided to pepper his bar with vintage equipment that looked the part. But he wanted to make them truly functional, to entertain his retro-loving customers. So, he commissioned the Bunker Club VectorClock!

    Now, regular followers of the blog will easily recognize the base unit here as a Tektronix 520A Vectorscope. So far a total of four of these delightfully-lighted machines have been converted to retro Oscilloclocks – see the Gallery for other examples.

    But as always with any model, Ian wanted to make some cool customizations. Let’s look at two of them.

    1. External XY Input

    First introduced in the Metropolis Clock, this feature allows Ian to input two signals and visualize them in X-Y format on the screen. This is very, very useful for generating custom Lissajous figures externally – using either a cheap signal generator, or even an iPhone!

    Lissajous figures from an iPhone!
    Cool Lissajous figures – even from a humble iPhone! (note, this picture is of the Metropolis Clock)

    The external signals are rendered within a rectangular ‘window’, pre-configured to look nice alongside other standard parts of the Oscilloclock screens. For some screens, the window is drawn large but with a lower intensity, forming a kind of ‘watermark’. This is an awesome effect!

    2. Custom Logos

    Nearly all Oscilloclocks feature some kind of customized logo. Past examples include the customers’ business’ name, the name of the oscilloscope manufacturer, or even the name of the customer’s favourite film:

    In Ian’s case, the obvious candidate was his new bar’s official logo – a very chunky-looking rocket blasting through the atmosphere!

    Further enhancements … on the way

    It seems Ian enjoyed his first clock so much, that he has commissioned a second, with a completely different physical look. Some further special effects and display animation are planned, to further enhance the nuclear theme and keep his customers happy. Stay tuned!


    Like what you see?

    Do you own a bar? Well, normally you wouldn’t want a clock in your premises, as it would help customers keep track of their time, which would be bad for business. But Oscilloclocks are so much more than timekeepers! Recent feature additions make them lots of fun to watch and fiddle with. If you have special ideas, let me know!

    (Disclaimer: Oscilloclock.com hopes that no-one is offended by the deliberately light-hearted tone of this post, in referring to the decidedly serious topic of nuclear warfare.)