Fresh from Oscilloclock Labs – a new VectorClock creation, commissioned for the office of a world-famous film and television director:
Tek 520 VectorClock – S/N 002 (image published with permission of the owner)
This unit is based on an original Tektronix 520 vectorscope, which is the predecessor of the 520A that was used in the first VectorClock, described here. This custom conversion employs several key enhancements, and performance has never been better!
Yes, you’ve all thrown away your lunky old CRT monitors, in favour of sleek ultra-thin LCD displays. And, you thought you’d never see another one again…
But this CRT display has a twist! It’s round. It’s small at just 3 inches diameter. And it’s awfully cute.
Last year, I was approached by a dedicated flight simulation enthusiast, who needed a radar indicator to use in a fighter cockpit replica. The indicator should employ a CRT, for the most realistic look. Could Oscilloclock design and construct such a display?
It didn’t take much convincing! Diverging only temporarily from building clocks, I took up the challenge to create my first raster-scan CRT display unit. In the ensuing months, difficulties sprang forth from every direction in the project, but ultimately I was able to avoid a diraster (sic) and deliver a functional assembly:
The key component of this setup is a new prototype VGA Board that converts a VGA signal into analogue X and Y outputs. Both analogue intensity and binary blanking outputs are provided.
Oscilloclock VGA Board prototype
The X and Y outputs drive an Oscilloclock Deflection Board, while the binary blanking output drives the blanking amplifier in a CRT Board. Blanking isolation, heater, and HV supplies are provided by a Power Board.
Deflection Board – modified for ultra-linear HV outputCRT Board – modified for improved frequency responsePower Board – with improved optocoupler
It all looks so easy! But noooo. Astute readers will recall from other posts that every Oscilloclock project involves sleepless slumbers, horrific hair-pulling, and forgotten family members. Let’s see what caused me grief this time…
Recently, I’ve seen quite a few search hits and even an enquiry regarding the 400-LED dual-trace oscilloscope that I briefly mentioned on my History page. With renewed enthusiasm therefore, let’s take a trip down history lane and see what I was doing back in 1990!
A compact dual-trace 1MHz DC scope – what more could a high school kid want?(more…)
Last month’s post about the Heathkit Oscilloclock generated tremendous interest, and I’ve heard from several folks keen to try their hand at preserving their own beloved instruments.
… so let’s take a brief look at what was involved in the Heathkit OR-1 conversion!
Approaches to conversion…
There are many approaches to retrofitting a scope into an Oscilloclock, but it really boils down to how much of the original circuit you want to re-use, vs. what you will bypass with Oscilloclock boards.
In Transformer Corner Part 3, I looked at how to choose materials for a custom HV transformer. One way was to pull stuff from the junk-box – I did this in my early Prototype. The much, much better way was to use an off-the-shelf core with documented specs.
Let’s look at winding up the transformer. It’s amazingly easy to get a workable result!