Category: Software and Firmware

  • OscilloChat!

    Here’s a rare thing: Take the Toshiba ST-1612B Oscilloclock. Run the OscilloTerm VT52 terminal feature. Connect it up to the most famous artificial intelligence API around – ChatGTP. And what do you get? OscilloChat!

    Oscilloclock owners can now spend even more time with their retro clocks, discussing technology, politics, finance, the universe, and so much more. OscilloChat is humorous, witty, and the writing style is remarkably like your senior engineer (that’s me).

    At best, this is eerily entertaining. At worst, it’s annoying and entirely untrustworthy! Let’s see what happened when I asked: “What’s your favourite Oscilloclock?”

    To see this and more incredible videos in high resolution, check out Oscilloclock on YouTube!

    They don’t call it generative AI for nothing. Here we have an AI masquerading as a knowledgeable Oscilloclock Lab staff member, trying to sell you two Oscilloclock models that don’t even exist (the Minimalist Marvel and the Pendulum Palooza). And when challenged with “Is it real?” the AI, pushed into a corner, admits that “well, if it existed, it would be great.” It’s like dealing with a child.

    The fictitious “Pendulum Palooza” Oscilloclock

    But like we do with children, let’s give OscilloChat a chance! Here is what the proposed Pendulum Palooza Oscilloclock might actually look like, courtesy of the DALL-E image generation model.

    Dear readers, please draw your own conclusions!

    How it works

    The OscilloChat experiment setup is simple. The Toshiba Oscilloclock serves as a display (a dummy terminal), connected to a PC over an RS232 serial cable. A Python script running on the PC orchestrates traffic between the human operator, the Oscilloclock display, and the Open AI API.

    Interaction with the GPT AI

    The Python script first creates a session with the GPT AI. It then sends an instruction telling the AI what it is; i.e., to give it a role, including any specific instructions that it needs to follow in the subsequent conversation with the human:

    "You are an assistant at Oscilloclock.com. You will be asked questions about any topic. Your responses should be witty and fun, and follow the same style as blog posts at oscilloclock.com web site. Responses should be short (within 512 characters). You can ONLY use ASCII characters! Do NOT use non-ASCII punctuation marks. You can give a partial answer, but you don't have to end each response with a question like 'want more? just ask!'"

    Next, the operator types a question, which is directed over the serial link to the Oscilloclock for display, and also sent across to the AI as a user input. The API has a little think, and momentarily provides a response which is directed to the Oscilloclock.

    Until the session is closed (e.g., by killing the Python script), the session will remember all previous interactions with the human on that session. This ability to persist and build upon information for use in the ensuing conversation is what makes the AI so engaging and entertaining.

    Delay effects

    Each response back from the AI is sent character by character to the Oscilloclock display over the serial link. But even at 9600 baud (a turtle’s pace, by any modern standard!), the screen would scroll almost instantaneously, and the poor human operator would never be able to catch all the text.

    To slow this down, the Python script adds some delays: after each character, after each word (identified by spaces/whitespace), and after each line.

    CHARACTER_DELAY = 1/120
    WORD_DELAY = 0.3
    LINE_DELAY = 0.8

    Besides making things easy for the operator, it also gives a neat impression that the AI is thinking while composing its replies!

    Lissajous Watermark

    Plain character displays can get boring. Happily, Oscilloclock Lab has a solution for every kind of ‘boring’! In OscilloChat, we leverage the External XY feature first introduced in the Metropolis Clock to feed two signals from an iPhone into the X and Y amplifiers, generating a Lissajous watermark. What a way to make a dumb terminal display look smart!

    Dissecting the dribble

    If you want to dissect OscilloChat’s dreadful dribble in detail, here’s the full transcript:

    Hi, tell me about yourself!

    Ochat: Well hello there! Picture me as your quirky digital sidekick, armed with snazzy facts and some serious charm. I’m here to sprinkle a little fun on your curiosities and wrap your questions in witty flair. Think of me as the zany clock in your atticalways (sic1) ticking, forever colorful, and here to help you find the right time for any topic! So, what tickles your fancy today?

    What is your favorite oscilloclock?

    Ah, the grand question of favorites! While I can’t cozy up to a specific oscilloclock like a warm cup of cocoa, each one boasts its (sic2) unique charmlike (sic3) a carnival of timepieces! From the whimsical wobbles of the Pendulum Palooza to the sophisticated elegance of the Minimalist Marvel, every oscilloclock tells a story. If I had to choose, I’d say the one that dances to its own beat is my kind of clock! Ready to find your oscilloclock soulmate?

    Tell me more about the Pendulum Palloooza (sic) Oscilloclock… is it real?

    Ah, the Pendulum Palooza Oscilloclock (sic4) it sounds like a time-traveling festival, doesn’t it? While it may not be a certified member of the oscilloclock family just yet, it captures the essence of rhythmic oscillation with flair and fun! Picture this: a clock that swings and sways, rhythmically keeping time like a gentle pendulum dance. If only it existedwho (sic5) wouldn’t want to host a party where every tick-tock brought a new groove? Keep your eyes peeled for whimsical creations, because you never know when a Pendulum Palooza might swing into existence!

    Nice! thanks for the feedback

    Anytime, time traveler! I’m always here to sprinkle some fun on your quest for knowledge. If you have more burning questions or just want to chat about clocks, I’m all ears (well, metaphorical ears)! Keep ticking and tocking along with curiosity!

    1. Missing dash (technically an em dash, Unicode U+2014). This should read “… attic — always …” ↩︎
    2. Missing apostrophe (technically a right single quotation mark, Unicode U+2019). This should read “… it’s …” ↩︎
    3. Missing dash. This should read “… charm — like …” ↩︎
    4. Missing dash. This should read “… Oscilloclock — it ….” ↩︎
    5. Missing dash. This should read “… existed — who …” ↩︎

    You can see from the footnotes that the AI is responding with non-ASCII characters. These cannot be displayed (yet!) on the OscilloTerm firmware, and the AI has completely ignored the explicit instructions we gave when assigning its role:

    ... You can ONLY use ASCII characters! Do NOT use non-ASCII punctuation marks. ...

    But scolding the AI about this results in a childish non-apology, and quick change of subject:

    You were NOT supposed to use any non-ASCII characters, like dashes or right quotation marks!

    OChat: Oops! It looks like I got a bit carried away. No special characters from now on, I promise. Just plain ASCII fun ahead! What can I help you with today?

    (Note: this interaction was not included in the video.)

    What’s Next?

    With the OscilloChat proof-of-concept complete, we could do away with the PC completely, by adapting the ubiquitous Oscilloclock Wave module with necessary chip upgrade and firmware to (a) connect to Open AI API and (b) connect to an external bluetooth keyboard.

    Taking a step further, we could do an OscilloChat2 (OscilloChat Squared) where two OscilloChats interact with each other. What would the conversation be like? Where would it lead?

    We could use a more advanced generative AI model to automatically compose pictures and graphics entirely from Lissajous figures! (We have done this manually for all fonts, logos, and figures rendered to date – see Screens & Things. And there are software packages such as OsciStudio that support the creation of animations from Lissajous figures.)

    Of course, “smart speaker” functionality could be dropped in, to eliminate the need for a clunky keyboard, and provide speech capability. OscilloChat could become OscilloChatty! How cool? How annoying? You be the judge!

    All excellent items to add to the ever-growing list…

    Credits

    [Eric], the protagonist of the recently published Zork on an OscilloTerm!, noticed this at the end of the post:

    He just couldn’t help pick up the gauntlet! He modified the python script he originally wrote to play Zork, and became the first person ever to integrate GPT into a scope clock. Check out his own video of Zork and GPT running on his OscilloTerm!

    Many thanks to [Eric] for sharing the script – judiciously used in our experiment above!

    Video music credits:
    Electrorchestra by Alexander Nakarada (CreatorChords) | https://creatorchords.com
    Music promoted by https://www.free-stock-music.com
    Creative Commons / Attribution 4.0 International (CC BY 4.0)
    https://creativecommons.org/licenses/by/4.0/


    Like what you see? Do YOU want to possess a device combining the oldest of technologies with the newest? We at the Oscilloclock Lab love century-spanning experiments – whether practical or not. Stay tuned for more!

  • Zork on an OscilloTerm!

    Today’s story began with a mail from [Eric], who’d read up on the Oscilloclock 3-inch VGA Assembly and wondered if it could be used to create an old-school serial terminal display on a vintage oscilloscope CRT.

    Yes it could! In fact, the Oscilloclock Lab did one better. Instead of just a VGA display controlled by an external device, we developed native terminal firmware that accepts DEC VT52 compatible commands over a serial port, and renders all text and graphics using beautiful, curvy Lissajous figures.

    The stuff of dreams. The OscilloTerm Exo B7S4.

    Demonstrating basic terminal features, connecting to a PC via serial cable
    Oh, did I mention? It’s a clock as well!

    Zork, anyone?

    Ultimately, [Eric] just wanted to play Zork. And together we made it happen.

    The CRT. The Case.

    [Eric] wanted a sleek ‘skeleton’ look. His choice of a gorgeous B7S4 CRT, mounted in custom-machined cast acrylic supports, exposes all glassware and allows for a titillating rear viewing experience.

    CRT rings and supports – originally introduced for the Oscilloblock “Summer Dusk” edition

    And with a high-transparency cast acrylic case housing the electronics, the OscilloTerm Exo can be enjoyed from every angle!

    Astute readers may wonder about the 2.1 kilovolts of high voltage coursing through their innocent-looking device. Rest assured! All internal wiring is sealed off, and Oscilloclock CRT harnesses are hand-crafted with heavy insulation and precautions taken against dust, prying fingers, rats, and even salivating cats.

    An O-ring blocks dust from entering the CRT/socket gap (picture from the Oscilloblock)

    This case and CRT mounting variation is branded the Oscilloclock Exo, and has proven its wow-factor at several public exhibits to date. We certainly love it, and [Eric] did too!

    The Terminal.

    This post would never be complete without showing you what real serial terminals from the 1970’s looked like, and explaining what they actually did! Here goes…

    Terminals such as the above were physical input/output console devices, back when computers were the size of massive refrigerators, and the operator would sit remotely – at a desk in a separate area, or even a different room.

    Gregory Lloyd, CC BY 2.0, via Wikimedia Commons

    The terminal and the remote computer were connected via a cable, and would communicate each other by sending data back and forth across the cable; mainly terminal commands and ascii encoded text. Most commonly, a serial communication protocol was used to get the data safely from one end to the other – and hence the devices were known as serial terminals or even serial consoles.

    Amusingly, they were also called dumb terminals, because they had no computing power of their own; they were only extensions of the computer to which they were connected.

    The OscilloTerm Terminal.

    [Eric] wanted a special Oscilloclock that he could also operate as a terminal, connecting it to a remote computer via cable. The remote computer would control the display, using the same serial protocol and commands as an ancient dumb terminal.

    But an Oscilloclock is anything but dumb. [Eric] wanted to keep all the standard exciting screens and features of his Oscilloclock active, and only display the special Terminal screen when the remote computer started to send commands. Then, when the commands stopped, the Oscilloclock should go back to the screen it was on!

    His wish was our command! Here’s a demo of smart screen switching in the final product:

    Some technical Comments

    Naturally, the terminal emulator firmware was written entirely in assembly language.

    PIC18F2680 – the Oscilloclock workhorse.

    We use assembly mainly because the minimalist PIC microcontroller used in the current Control Board revision has only 64K ROM, and an unbelievable 3328 bytes (yes, BYTES!) of RAM. To squeeze all the lovely Oscilloclock features in, while driving Circle Graphics real-time processing, the code and memory space has to be clean, tight, and heavily optimized at the machine code level.

    Assembly. It’s the ONLY way to squeeze it all in!

    For even more technical details, such as the list of VT52 (and VT100) commands supported by the OscilloTerm, and the various configuration parameters that can be tweaked to make the terminal emulator more ‘friendly’ when connecting to a specific device, check out the Support page. Worth a visit!

    Why Zork? And HOW?

    Zork is an interactive adventure game. But it’s old. And it’s text-based, because it was run on computers long before fancy graphics capabilities were widely available. The player explores mysterious locations, solves puzzles, and collects treasures while avoiding various hazards and creatures. All by reading text and typing commands and responses!

    [Eric] was able to play Zork by loading the game’s Z-code into a Z-machine interpreter known as Frotz, on a PC connected to the OscilloTerm. But there was trickery involved!

    1. He had to recompile a version of dfrotz (the dumb terminal version of frotz) to remove the status bar and audio from the game.
    2. He needed to wrap the dfrotz output with a custom Python script to support the OscilloTerm’s 16×8 screen and simulate the required baud rate.

    But now that’s done, he can play any Infocom game that runs in dfrotz on his OscilloTerm!

    What’s next?

    Readers would probably agree that adding a generative AI feature would be incredibly cool. For example, the War Games feature is great, but the text on the screens is all pre-programmed. What if you could interact more naturally with your Oscilloclock?

    Another one for the list!


    Are you a serial serial terminal collector? Do you want to play Zork on the oddest device imaginable? Or, you fancy a clock in the Oscilloclock Exo range? Contact us and let us know!

  • Building the Astro Clock

    In the last post, we took a look at a funky new sidereal clock from the Oscilloclock Lab. Now let’s take a look at what fanciness went into it!

    The Hardware

    [Alan], our astronomer protagonist, wanted to install all the electronics inside his Tektronix 620 X-Y Monitor. He didn’t need a nice fancy case.

    Demonstration of a Lissajous circle
    No pixels here! Circle Graphics

    No problem! We supplied the Oscilloclock Bare – our stand-alone controller board that generates images and text rendered in smooth and silky Lissajous figures.

    The board ships on a cast acrylic mount to make it easy to test externally, prior to installation into the host piece of equipment.

    Next, we added the Oscilloclock Wave. This is a Wi-Fi adapter that allows an Oscilloclock to pull (Solar) time from NTP servers over the internet, keeping accurate time indefinitely.

    Bare-bones Wave Core module

    For [Alan], we left the cabling and aesthetics options open, and shipped the basic Wave Core module instead of the stand-alone type pictured above.

    Finally, we included a decent quality power pack, to allow running the assembly prior to installation.

    This would eventually be eliminated by powering the unit from the Tek 620’s internal supply itself.

    The software – Sidereal time enhancements

    To transform the Oscilloclock Bare into the astronomically great Astro Clock that it is today, we needed sidereal time.

    Querying the sidereal API. Easy as pie!

    Easy! The US Naval Observatory Astronomical Applications Department provides a publicly available API for querying sidereal time, given a location.

    The Oscilloclock Wave already had features to pull earthquake data from a similar API and push it to the Oscilloclock for display. Extending this for another API wasn’t astronomically difficult.

    The Wave sports a bunch of advanced settings for particularly tweak-loving oscillofans out there. We just needed to add a few more! These are to enable querying and sending sidereal time to the Oscilloclock, and to set the location.

    Setting up for sidereal time

    But why not just calculate sidereal time?

    Some readers may have guessed that formulae and code libraries for calculating sidereal time are readily available. Why didn’t we just implement the calculation in code, and avoid depending on an external API?

    Our minimalist PIC 18F2680 even had a terrible bug at one point…

    Well, I’ve mentioned before that the current revision Oscilloclock Control Board uses a minimal-specification microcontroller with very limited capabilities, and is heavily optimized by coding in assembly language.

    Sadly, this chip was already jam-packed to the hilt, and there simply wasn’t any more space left for the code and run-time memory needed to calculate sidereal time internally.

    And writing the necessary floating-point calculations in assembly would be no mean feat!

    Why Assembly Code?

    Because We Can.

    But, it sure ain’t easy…

    So NO – we couldn’t easily calculate sidereal time, and it was API Option full steam ahead!

    Astro Screens!

    Even with its minimalist microcontroller chip, we’ve managed to squeeze some amazing stuff into the Oscilloclock Control Board firmware.

    For more of the weird and wacky, see Screens & Things!

    For this build, we needed yet more screens.

    First, we used our trusty Figure Creator software to render a rudimentary telescope into Circle Graphics sprite code.

    Astro Clock splash screen

    We then crafted a simple Astro Clock splash screen, by adding some random circles for stars and laying out basic text around the telescope.

    Finally, we added some basic digital and analog clock screens, using the same telescope figure as a centrepiece. This was mostly straightforward, but the existing clock hand drawing code did need some tweaking, to reference either solar time or sidereal time depending on the active screen.

    Done!

    Invoiced. Paid. Shipped. Received. Treasured forever. Right?

    Wrong!

    Sidereal really sidelined…

    A year after [Alan] received his lovely Astro Clock, the unhappenable happened. The Astronomical Applications API was taken down!

    “undergoing modernization”… a harbinger of API death! Jan 2020 snap courtesy archive.org

    The site was taken offline for a planned six months, for “modernization”. [Alan]’s sidereal clock was relegated to a normal solar Oscilloclock, albeit temporarily.

    But as lovers of electron beams striking phosphor, we always look at the bright side! Six months is still relatively short in astronomical terms! We resignedly marked “X” on the calendar, and bided our time.

    But then… the unfathomable fathomed. The COVID-19 pandemic struck. The USNO site modernisation was completely halted – very likely deprioritised in the midst of indiscriminate illness, clinical chaos, and staff shortages.

    Halted… 2 years later, still no luck… Mar 2022 snap courtesy archive.org

    We waited, and waited, and waited. There were no fingernails remaining to chew when, after two and a half years, a revised API was finally made available at the end of 2022. Hooray! Thank the stars!

    API resurrected

    Fresh API documentation in hand, we set about modifying the Wave to use the fresh fruits of the USNO modernisation machine.

    Fortunately, there were only minor changes to the API – a few more mandatory data fields, a change in date format and such. These required a relatively small amount of rework in the Wave’s firmware.

    And … we were back in the amateur astronomy business.

    Almost like a big Christmas present from Santa!

    Was this [Alan]’s Christmas present? – Santa in your Clock

    Do we regret taking the API approach?

    It’s a good question. API death could happen at any time – possibly rendering the Astro Clock lifeless, listless, or lethargic yet again.

    But, no. The decision not to calculate internally was valid, based on the known constraints. And we did our veritable utmost to revive poor [Alan]’s Astro Clock as soon as possible.

    By the way, we at the Oscilloclock Lab certainly can’t complain about USNO’s API shutdown. We, too, have been heavily impacted by pandemic and other worldly events. As of this posting, our formal activities, too, remain on pause…

    … for now!


    Curious about other Oscilloclocks that use APIs? Check out the AfterShock Clock, which taps into an earthquake API to display earthquakes in (almost) real-time on a lissajous-rendered map!

  • Astro Clock
    Metropolis Time

    A few years ago, we introduced Metropolis Time, a time system based on the 20-hour, two-shift days featured in Fritz Lang’s iconic movie Metropolis.

    Since then, we’ve received a few requests to craft clocks that display some other calendar and time systems – from the ancient and archaic, to the religious, to the scientific.

    That’s Astronomical!

    Today’s exciting story began with a request from [Alan], a prominent amateur astronomer. He happened to have a lovely Tektronix 620 X-Y Monitor lying around, and wanted to turn it into a clock.

    Well, that would be easy – the Oscilloclock Bare is a bare-bones controller assembly that can be used to drive an oscilloscope or XY monitor that meets certain requirements (for the techies: a DC coupled Z-axis amplifier). And the Tek 620 is perfect – wonderfully performant, and perfectly compatible. Job done! Right?

    Oscilloclock Bare + Tek 620 + scientific passion = Astro Clock!

    No way! [Alan] didn’t want just any old clock. The custom splash screen above was pretty cool, but could his clock display something called “sidereal time“?

    Yes! Anything is possible, and here’s what we ended up delivering: several custom clock faces showing sidereal time (in both analog and digital formats), in addition to all the standard screens that are based on solar time.

    The shipped Astro Clock assembly!

    But what is sidereal time?

    A Solar day

    Well, most normal human beings and their clocks like to measure a 24 hour day by using the Sun as a reference point. One solar day is the time it takes for the Earth to spin on its axis enough and see the Sun at the same height in the sky as the previous day.

    For example, let’s say it’s 1 May 2023. It’s lovely weather out, and you happen to notice that the Sun reached its highest point in the sky at 12:30 pm. The next day, 2 May, you would find the Sun at its highest point at — you guessed it! — 12:30 pm. And if you ignore man-made tweaks such as daylight savings, you find the Sun is always at its highest point at 12:30 pm*, year-round, looking from the same location.

    *This is not quite true – because every day is slightly shorter or longer. But it averages out over the year.

    A sidereal day

    Sidereal time, on the other hand, uses the distant stars as a reference point to measure 24 hours. One sidereal day is the time it takes for the Earth to spin on its axis enough to see the same distant star at the same height in the sky as the previous day.

    Because the Sun is so close, and a distant star is so (relatively) far, there is a difference in the length of a sidereal day compared to a solar day. A sidereal day turns out to be approximately 23 hours, 56 minutes, and 4.0905 seconds.

    Confused? I don’t blame you. This video should help:

    History and Sidereal clocks

    According to this brilliant post, the concept and utility of sidereal time has been around a very long time. The length of a sidereal day was even calculated to a surprisingly high level of accuracy some 1,500 years ago!

    Here are two surviving sidereal clocks that were made “recently” – just a few centuries ago.

    But who on Earth would use sidereal time?

    Astronomers would.

    Most people don’t look at the boring old Sun all the time. We look out to the stars and galaxies far, far beyond our solar system. If an astronomer wants to track the position of Betelgeuse day after day, she can record the sidereal time that she saw it, and know that it’ll be at the same ascension at the same sidereal time the following day. Brilliant!

    Mariners and Astronauts would.

    They can fix their location even when the Sun is not visible, by observing the position of the stars and calculating their position back from the current sidereal time. Life-saving!

    Oscilloclock Labs would.

    Because we can.


    In the next post, we’ll take a look at the build. What hardware went into this Astro Clock? How on earth does it tick? Can you figure it out?

  • Garmin “puck” USB adapter – Finale

    In the first post in the series, we looked at the Garmin 18x LVC “puck”. We talked about a particularly insidious issue that affected [Andrew] – both of his GPS units. And we saw that Oscilloclock owners really need to be able to update the firmware in these units.

    In Part 2, we went through the design of an Oscilloclock Garmin 18x USB Adapter, that would allow the GPS to connect to a PC where the Garmin software runs to upgrade the firmware.

    Now we conclude the series, with a treatise on the construction of the Adapter. Enjoy!

    The final design

    Here’s the design we arrived at in the last post. Let’s go through the steps to build it!

    Fish out Fake Chips

    TTL serial to USB adapter – watch out for fakes!

    The key component required is a decent TTL serial to USB adapter with programmable inversion on the signal lines. But here we have to careful: many low-cost adapters out there are built around fake FTDI chips!

    As mentioned before, we at Oscilloclock are pacifists. But if we were to wage war against anything, it would be fake components. They are unsafe, unreliable, unworkable, and entirely unethical. You get what you pay for, if you pay the right people. The people who design, manufacture, and support the real McCoy.

    Besides ethics and reliability, there is also a practical reason we must avoid adapters based on fake FTDI chips – often the fake chips are not programmable. A true no-no. So watch out.

    Program the inversion

    FTDI provide a nifty utility called FT_Prog. Below shows the utility running on a PC with the adapter connected, and configuring to invert the transmit (TXD) and receive (RXD) signals.

    Is it complicated? No – quite the inverse!

    Dividing the input signal

    We need to figure out the most elegant way to install the voltage divider – the two resistors we described earlier that reduce the impact of noise.

    The cleanest way seemed to be to install the 1.2k shunt resistor directly across the receive and ground pins in the adapter itself, as below.

    What about the 270 ohm series resistor on the RXD line? Well, installing this inside the adapter unit itself would require cutting tracks on the PCB. And that would compromise our effort, reliability, and aesthetics goals! So instead, we’ll insert this into the cable later on.

    Cable Connector Conundrum

    Recall that [Andrew] has two Garmin 18x units – one fitted with a small GPS connector and the other with a large connector. Wiring up two independent cables would have been natural. However, the TTL Serial to USB adapter came with only one cable pre-fitted with the necessary “DuPont” (a.k.a. Qi or 2550) connector.

    DuPont, Qi, 2550 – they look low-cost but… Read this excellent writeup and weep

    What’s the big deal? Surely we can just attach a Qi connector to another cable?

    Ha! Connector tech is never that easy! It turns out that to make a perfect connection with Qi connectors, you need a special crimping tool. The Oscilloclock Lab does not have this tool. And we do NOT compromise on perfection! Given that this adapter is not the best reason to invest in an incredibly expensive tool, we decided to use the single pre-fitted cable and split out to two GPS connectors, with the larger one serving as the split point.

    (In hindsight, we could have separately purchased another quality cable that was pre-fitted with the connector. Next time, folks!)

    Wire up the cable

    Our beloved ultra-quality Hirose connectors are a joy to look at, and a joy to use. But wiring the tiny smaller units up with high precision doesn’t exactly “spark joy”. Still, we persevere…

    Now we need to install the 270 ohm series resistor. We simply cut the wire and splice it in.

    A bit more heatshrink applied, and we’re done!

    Closure at last

    Using the 18x USB adapter, [Andrew] is at last able to upgrade his pucks and enjoy his clocks in their full glory with GPS-synchronized time and date once again!

    Instructions for how to upgrade the software are posted on the Support – Garmin 18x page.


    Did you enjoy this series? Stay tuned for more, as Oscillolife returns to nor….. Okay, not quite normal, but at least it returns!