Tag: ブラウン管

  • Many folks have asked whether screen burn-in, or phosphor burn, is not a problem. They are concerned by what was a frequent occurrence in the CRT monitors and oscilloscopes of yesteryear: a permanent scar prominently visible on the screen…

    Phosphor burn – this old spectrum analyser looks ‘on’ even when it’s off!

    To understand why this occurs, first think of an iron burn. If you deliver too much heat for too long into the same spot, your nice new Oscilloclock brand T-shirt will feature a prominent (and permanent) mark as shown below.

    Iron burn – this shirt’s fibres have been literally scorched!

    (I could push for another analogy, and describe livestock branding – but I think you get the message.)

    In a CRT, a beam of fast-moving electrons bombards the phosphor coating on the screen to produce an image. If the beam is too intense, or it is allowed to trace the same route on the screen over a long period of time, the phosphor compound may degrade and lose its luminance. The end result is:

    • The screen won’t light up well in those spots any longer.
    • The damaged areas may appear dark even with the power off – a ‘ghost image’.

    Interestingly, this damage does not actually shorten the working life of the CRT! (It does not affect the longevity of the heater, or the amount of gas permeating the vacuum.) However, it is certainly not attractive, and is most definitely NOT an effect you wish to observe on your fancy custom-crafted Oscilloclock…

    Keeping the ghosts at bay

    Happily, screen burn-in is not much a problem with the Oscilloclock. Let’s see why.

    1. CRT selection

    Some CRT types and brands are more susceptible to screen burn-in than others. There are a number of factors for this, and all of these are considered during CRT selection to minimize the risk of burn-in:

    First, there is the phosphor compound used. Some phosphors, just by their chemical makeup, degrade faster than others. More significant, though, is the fact that some phosphors require more energy (electron beam intensity) to produce the same level of visible light output as others.

    For example, a long-persistence blue P7 phosphor, such as used in the Model 1-S and the Prototype, is by its nature ‘darker’; it requires a higher beam intensity than the crisp green P1 or P31 phosphors used in many other models. The higher beam does make the P7 more vulnerable to burn-in.

    Different phosphors need different intensities to appear ‘bright’ – so some will burn faster

    Fortunately, the simple protection mechanisms in place in the Oscilloclock (we’ll get to these later) will avoid burn-in even on sensitive phosphors. The customer need not be concerned about this risk factor, and can select any of the available phosphors.

    The second factor is the thickness of the phosphor coating. The thicker the phosphor, the less burn-in for the same beam intensity. Some CRTs are infamous for having ridiculously thin phosphor coatings, making them extremely susceptible to burn-in. Sadly, some CRTs that are most readily available today fall into this category, and their data sheets even specify an incredibly short maximum longevity of 1000 hours. That’s less than 2 months of continuous use!

    Beware CRTs with short lifetime ratings – they may have ridiculously thin phosphors!

    Most CRT manufacturers did not publish lifetime ratings, nor did they publish specifications of phosphor thickness. In the Oscilloclock lab, I rely mainly on my and others’ experiences with the manufacturer, and pick and choose only the highest-quality CRTs. Expensive – but definitely worth it!

    The third factor is the use of any additional technology in the CRT that would allow for reduced beam intensities. The most common example is the aluminized screen, an additional coating on the rear of the phosphor. This coating reflects the light that would normally emanate from the phosphor towards the rear of the CRT, back into the phosphor (and the front of the screen). A much more efficient use of energy!

    However, this technology was a later development, so many CRTs with an aluminized screen tend to be rectangular and have an in-built graticule. These may not be as visually pleasing in a standard Oscilloclock as non-aluminized CRTs.

    2. Software (Firmware) protection mechanisms

    My favourite screensaver – Flying Toasters!
    (Image used under Fair Use terms)

    Remember the phrase “screen saver”? In the pre-LCD monitor days, most computers employed some form of software that would stop the same image being displayed for too long, to avoid screen burn-in.

    While there is nothing as fancy as flying toasters, the Oscilloclock has several mechanisms in place.

    1. Hourly XY Bump screen saver
      This feature simply shifts the image by a small amount in the X and Y directions every hour. The shift pattern repeats every 31 hours (a prime number), to ensure that every hour numeral will be placed in every screen position.
    2. Auto screen switch
      This feature simply cycles through the screens (clock faces) at regular intervals, configurable from 0 (off) to 90 seconds. This is by far the most commonly enabled feature, as it allows one to enjoy all the Oscilloclock screens without touching the control!
    3. Auto power off
      Strongly recommended by Oscilloclock labs, this feature simply turns the Oscilloclock off after a period of non-activity (not touching the control), configurable from 0 (off) to 90 minutes.

      This may sound counter-intuitive, but in practice, nearly all Oscilloclock owners are comfortable to turn their unit on just when they intend to enjoy it, and allow it to switch itself off. The exceptions are clocks that are permanent fixtures in offices and restaurants, in which case the owners manually turn their clocks on and off together with other appliances in the premises.

    These features are of course highlighted in the Operation Guide that accompanies every Oscilloclock.

    Summing it up

    So there we have it – there’s not so much to be concerned about after all. While CRTs do have a delicate phosphor coating, by selecting a decent CRT in the first place and looking after it in use, the risk of screen burn-in is drastically reduced. In fact, in 7 years of constructing Oscilloclocks, as of today not a single unit has come back for a CRT replacement!

  • Kikusui Time

    Time – the universal constant. Time passes the same for all peoples; rich or poor, busy or idle, inspired or dispirited. And time has certainly passed for Oscilloclock.com since the 2015 Tokyo Maker Faire – the event that just keeps giving!

    At last, we present the final model from that Faire – the Kikusui 537 Oscilloclock!

    See this in HD, and find more exciting videos on my YouTube channel

    The Kikusui 537 was hand-picked for conversion by the lab’s youngest technician (9 at the time). He chose it for its small size and portability, but also for its cute colour scheme! A dainty red sweep adjustment knob highlights a bright white and black control panel, with a blue case providing overall contrast and visual soothing.

    Kikusui 537 Oscilloclock

    The 537 Oscilloclock’s small size makes it the perfect clock for an office desk, bedside table, or mantle. And since this is a ‘maximum re-use’ conversion, the existing circuit is active and all the front panel controls are fully functional. Fiddle with the image’s size and position to your heart’s content! Switch from XY mode to normal sweep mode, to view raw Oscilloclock signals in real time, as the seconds tick by!

    History

    Kikusui Logo
    The Kikusui Electronics Corp. logo

    The 537 was manufactured by Kikusui Electronics Corp., a major producer of test equipment in Japan since 1951. It was produced in large numbers from 1975 and was extremely popular for its small form factor, solid-state design, 5 MHz bandwidth, and ‘low’ price of 45,000 yen (perhaps USD 1,000 in today’s terms). See the catalogue page (Japanese only) and the operating manual (Japanese and English).

    Construction highlights

    In a previous post, I mentioned there are several general approaches to converting an oscilloscope. Since the Kikusui 537 is fully solid-state (it uses transistors instead of valves/tubes, except for the CRT) and it is only 40 years old, I decided on the maximum re-use, minimal invasion approach. (I really should trademark that term!)

    This approach involves tying the Oscilloclock Control Board‘s outputs directly into the existing X and Y amplifier circuits. This was easy to do in the 537!

    Kikusui 537 Oscilloclock - inside top
    Oscilloclock Control Board mounted in the 537

    However, as discussed in the Circle Graphics post, we also need to be able to blank the beam at extremely precise intervals. Sadly, the 537 (like nearly all oscilloscopes of this vintage) does NOT have a convenient DC pulse-tolerant Z-axis input. I therefore installed an Oscilloclock Power Board, partially populated to serve as an isolated blanking amplifier, in series with the grid.

    Partially populated Oscilloclock Power Board
    Partially populated Oscilloclock Power Board

    Finally, an Oscilloclock Supply Board was needed to power the other boards.

    An Oscilloclock Supply Board is also nestled in there!
    An Oscilloclock Supply Board is also nestled in there!

    Mounting the Control

    What better place to fit the rotary encoder, than on the beautiful red sweep frequency adjustment knob that my junior technician liked so much! Here’s the general story:

    Kikusui 537 Oscilloclock - control (original)
    Sweep adjust control in its original state
    After removing the potentiometer
    After removing the potentiometer
    The encoder, after hacking with a hacksaw!
    The encoder, after hacking with a hacksaw!
    Kikusui 537 Oscilloclock - control mounted
    Voila – sweep knob now drives the rotary encoder!

    Like what you see?

    One of the two Kikusui 537 Oscilloclocks crafted for the Maker Faire is still available for the special person with a soft spot for a krazy kikusui klock. Visit the Availability page for more information, and of course see the Gallery for other unique creations!

  • The Oscilloclock Core

    Over the years, folks out there have reached out to me with all sorts of crazy ideas about cases and housings for scope clocks and custom CRT displays. Here are some interesting examples:

    • The console of a vintage pipe organ
    • An ancient grandfather clock
    • A cylindrical case made of some exotic wood
    • A “cathedral” style vintage radio

    Essentially, these people wanted just the innards of an Oscilloclock, which they would build into their own case. Could I help out?

    Absolutely! For people who want to roll their own cases, and who have experience handling high voltage electronics and CRTs, I occasionally prepare custom board sets that are lovingly hand-assembled, tested, and tweaked for optimum performance with a given CRT. Here we go:

    The Oscilloclock Core

    Oscilloclock Core, hand-crafted in 2015 for a discerning customer in Germany
    An Oscilloclock Core, hand-crafted in 2015 for a discerning customer in Germany
    The standard Oscilloclock Core layout, on a test acrylic mounting
    The standard Oscilloclock Core layout, on a test acrylic mounting

    I supplied this particular unit with an 8SJ42J Chinese-made CRT, just for testing purposes. This is a 3″ PDA tube with a highly restrictive rectangular viewing area, but the customer found it just great for checking things out!

    What comes with it?

    Here’s what’s comprises the typical Oscilloclock Core:

    • 1 x Fully assembled and programmed Control Board (optional on-board GPS)
    • 1 x Fully assembled Deflection Board (latest ultra-linear revision)
    • 1 x Fully assembled Power Board optimised for a given CRT (latest revision with options: onboard high-bandwidth blanking amplifier, rotation coil supply, auto fan speed control, unblanking plate modulation, and isolated bright/dim input)
    • 1 x Fully assembled CRT Board (optional; an external blanking amplifier recommended when the CRT cable is longer than 50cm)
    • 1 x Rotary encoder
    • 1 x Worldwide 9V power supply (high quality wall wort unit, commercial ratings)
    • 1 x Garmin GPS unit with 5m cable; wired to board-side connector (not required for onboard GPS)
    • 1 x Set of standard inter-board and CRT harnesses for testing and reference (10kV/3kV silicone melt-proof used for HV cables, other LV cabling also heat-resistant)
    • 1 x Cast acrylic test mounting assembly, fitted with the boards, ready for testing out-of-the-box with your CRT
    • 1 x Ceramic adjustment screwdriver
    • Service documentation (schematics, board layouts, complete Digikey BOMs, harness specs)
    • All components are latest available types sourced within the last 6 months, 0.1% or 1% tolerance resistors, minimum 2 x rated working voltage capacitors, all lovingly hand-mounted by myself
    • All boards sprayed with HV lacquer for moisture and arcing protection
    • 2-week satisfaction guarantee. But no long-term warranty on board-only purchases

    Naturally, the lengths of all harnesses and inter-board cabling can be customized according to the owner’s requirements. And there is also an Oscilloclock Core Cube arrangement, where the boards are stacked to reduce the length and width of the overall unit.

    What CRTs does it support?

    The Power Board and Deflection Board are increasingly flexible with each revision, but I insist on performing all configuration of the Core here in my lab. This allows me to tweak for maximum performance, and provide a proper satisfaction guarantee.

    Typically I work with the owner to recommend a CRT based on preferences such as size, colour, and aesthetics. However in cases where the owner already has a CRT in mind, and I don’t have the particular CRT or a close equivalent, I ask the owner to send me one to test against. Or, I simply procure one; after all, one can never have too many CRTs!  (Though my better half does not agree…)

    The current Oscilloclock Core board revisions meet the following operating parameters:

    • Maximum cathode to deflection voltage of 2175V
    • Maximum accelerator voltage of 3525V for PDA type CRTs
    • 6.3V heater, max 0.7A
    • Support for “Deflection Blanking” CRTs (see treatise here)
    • CRT rotation coil supply (+/-5V)
    • Precision deflection amplifier capable of driving +/- 275V with 0.1% linearity

    Like what you see?

    Check out the Availability page for more information, and of course see the Gallery for some unique CRT creations – many with an Oscilloclock Core at their heart!

  • The Oscilloblock’s new home

    Fresh off the press – some photos of the Oscilloblock – Summer Dusk edition in its new home! The owner is clearly a huge Nixie tube and neon aficionado, but this is his very first CRT clock. What a fitting environment!

    Oscilloblock Summer Dusk Edition - Owner photo 3
    Oscilloblock Summer Dusk Edition - Owner photo 2
  • Heads Up!!

    Recently I received a most intriguing request: I was asked to build a self-contained, super-bright X-Y display unit with 3-inch CRT, for use in an “HUD“. Hmm…

    Holographic Utterance Device?
    Horizontally Unstable Doohickie?

    Fortunately, I didn’t need to guess any further. As I was once an avid flight simulator enthusiast, I quickly hit upon the correct meaning: Head-Up Display. This is a mechanism that overlays instrumentation or map data onto the view looking forward from the cockpit, so that the pilot doesn’t have to look down to see this information.

    HUD in an F-18 aircraft. Source: AC Aviation Life
    HUD in an F-18 aircraft. Source: AC Aviation Life

    Wikipedia has a great introduction to HUDs and their history, but Mike’s Flight Deck has the definitive tome for flight simulator enthusiasts who want to actually build an HUD. According to Mike, the system employs various optical paraphernalia, but at the heart of the mechanism is what lies closest to my own heart – a CRT Display!

    Oscilloclock 3-inch X-Y-Z display, custom-built for an HUD
    An Oscilloclock 3-inch X-Y-Z display unit, optimized for use in an HUD
    (more…)