• ChatGPT reviews Oscilloclocks!

    ChatGPT reviews Oscilloclocks!

    Recently [Nels] wrote in saying he’d been having a nice chat with ChatGPT, and in the course of conversation, he asked this trendy AI tool to write a “review” of the clocks we make here in the Oscilloclock Lab.

    Here is the result – verbatim!

    [Nels] Write a review of Oscilloclock tube clocks.

    [ChatGPT] Oscilloclock tube clocks are a unique and visually stunning way to keep time. These clocks use vintage CRT (cathode ray tube) displays, similar to those used in old televisions and oscilloscopes, to display the time and other information in a mesmerizing way.

    One of the standout features of Oscilloclock tube clocks is their attention to detail. These clocks are handmade by a single individual, and every aspect of their construction is carefully considered. From the selection of the CRT displays to the circuitry that drives them, every component is chosen for its quality and durability.

    The result of this attention to detail is a clock that not only looks amazing but is also highly reliable and accurate. The timekeeping is controlled by an ultra-precise quartz crystal, ensuring that the clock is always on time. Additionally, the clock can be set to display a variety of other information, such as the date or temperature, making it a versatile addition to any room.

    One of the things that sets Oscilloclock tube clocks apart from other timepieces is their ability to be customized. The clock face can be designed to display any number of patterns or shapes, from geometric shapes to more abstract designs. This customization allows the clock to be tailored to the individual’s taste and can even be used to display personalized messages or graphics.

    While Oscilloclock tube clocks are undoubtedly a premium product, they are worth every penny for those who appreciate the unique combination of vintage technology and modern craftsmanship. The quality and attention to detail of these clocks are unmatched, and they are sure to be a conversation starter in any room. If you are looking for a truly one-of-a-kind timepiece, the Oscilloclock tube clock is definitely worth considering.

    Our thoughts?

    While there are three inaccuracies (one incorrect fact and two debatable points), the writeup is a lovely read and initially made your humble Lab technician feel warm inside.

    Until, upon objective reflection, I recognised some of the style, phrases and wording!

    Well, of course it should look familiar! ChatGPT predicts what the human expects as a response, and then cleverly arranges and regurgitates data that it has absorbed as part of its training. Apparently, it has devoured much of the Internet up until early 2022. This would include 59 blog posts and 19 pages published on Oscilloclock.com up until that date – and a few other references such as three lovely write-ups on Hackaday.

    [Nels] apparently did not continue the conversation, but if he had, he could have pointed out the three inaccuracies (Quiz – have you spotted them yet? Check your answers below), and ChatGPT would have learned something.

    Even with a rough understanding of how this tool works, it’s amazing to see the outcome.


    Crazy idea – what if your Oscilloclock could connect to an AI service and deliver cool new images, funny text, or interesting conversations? Just watch out for mistakes!

    Robots wrote this review! Oil paintings generated by ChatGPT sibling DALL·E 2

    Quiz answers:

    1. Incorrect: “… handmade by a single individual.”
      • In fact, several craftspeople have been involved to date in the design, assembly, and software authoring required to build Oscilloclocks. (Even excluding the PCB and case manufacturing processes.)
    2. Debatable: “… timekeeping is controlled by an ultra-precise quartz crystal
      • It’s true that the current revision Oscilloclock Control Board does have an on-board quartz crystal, and this does keep reasonably accurate time if needed…
      • However the preferred mode of operation is to synchronise time against GPS (using a GPS receiver) or an NTP server (with onboard Wi-Fi or the Oscilloclock Wave).
    3. Debatable: “… the clock can be set to display … temperature
      • The current revision Control Board and firmware do not support temperature sensing.
      • But it’s true that it’s on the ever-growing list of things to do! Did ChatGPT predict this?
  • Garmin “puck” USB adapter – Finale

    Garmin “puck” USB adapter – Finale

    In the first post in the series, we looked at the Garmin 18x LVC “puck”. We talked about a particularly insidious issue that affected [Andrew] – both of his GPS units. And we saw that Oscilloclock owners really need to be able to update the firmware in these units.

    In Part 2, we went through the design of an Oscilloclock Garmin 18x USB Adapter, that would allow the GPS to connect to a PC where the Garmin software runs to upgrade the firmware.

    Now we conclude the series, with a treatise on the construction of the Adapter. Enjoy!

    The final design

    Here’s the design we arrived at in the last post. Let’s go through the steps to build it!

    Fish out Fake Chips

    TTL serial to USB adapter – watch out for fakes!

    The key component required is a decent TTL serial to USB adapter with programmable inversion on the signal lines. But here we have to careful: many low-cost adapters out there are built around fake FTDI chips!

    As mentioned before, we at Oscilloclock are pacifists. But if we were to wage war against anything, it would be fake components. They are unsafe, unreliable, unworkable, and entirely unethical. You get what you pay for, if you pay the right people. The people who design, manufacture, and support the real McCoy.

    Besides ethics and reliability, there is also a practical reason we must avoid adapters based on fake FTDI chips – often the fake chips are not programmable. A true no-no. So watch out.

    Program the inversion

    FTDI provide a nifty utility called FT_Prog. Below shows the utility running on a PC with the adapter connected, and configuring to invert the transmit (TXD) and receive (RXD) signals.

    Is it complicated? No – quite the inverse!

    Dividing the input signal

    We need to figure out the most elegant way to install the voltage divider – the two resistors we described earlier that reduce the impact of noise.

    The cleanest way seemed to be to install the 1.2k shunt resistor directly across the receive and ground pins in the adapter itself, as below.

    What about the 270 ohm series resistor on the RXD line? Well, installing this inside the adapter unit itself would require cutting tracks on the PCB. And that would compromise our effort, reliability, and aesthetics goals! So instead, we’ll insert this into the cable later on.

    Cable Connector Conundrum

    Recall that [Andrew] has two Garmin 18x units – one fitted with a small GPS connector and the other with a large connector. Wiring up two independent cables would have been natural. However, the TTL Serial to USB adapter came with only one cable pre-fitted with the necessary “DuPont” (a.k.a. Qi or 2550) connector.

    DuPont, Qi, 2550 – they look low-cost but… Read this excellent writeup and weep

    What’s the big deal? Surely we can just attach a Qi connector to another cable?

    Ha! Connector tech is never that easy! It turns out that to make a perfect connection with Qi connectors, you need a special crimping tool. The Oscilloclock Lab does not have this tool. And we do NOT compromise on perfection! Given that this adapter is not the best reason to invest in an incredibly expensive tool, we decided to use the single pre-fitted cable and split out to two GPS connectors, with the larger one serving as the split point.

    (In hindsight, we could have separately purchased another quality cable that was pre-fitted with the connector. Next time, folks!)

    Wire up the cable

    Our beloved ultra-quality Hirose connectors are a joy to look at, and a joy to use. But wiring the tiny smaller units up with high precision doesn’t exactly “spark joy”. Still, we persevere…

    Now we need to install the 270 ohm series resistor. We simply cut the wire and splice it in.

    A bit more heatshrink applied, and we’re done!

    Closure at last

    Using the 18x USB adapter, [Andrew] is at last able to upgrade his pucks and enjoy his clocks in their full glory with GPS-synchronized time and date once again!

    Instructions for how to upgrade the software are posted on the Support – Garmin 18x page.


    Did you enjoy this series? Stay tuned for more, as Oscillolife returns to nor….. Okay, not quite normal, but at least it returns!

  • Garmin “puck” USB adapter – Part 2

    Garmin “puck” USB adapter – Part 2

    In the previous post, we looked at the Garmin 18x LVC “puck”. We talked about a particularly insidious issue that affected [Andrew] – both of his GPS units. And we saw that Oscilloclock owners really need to be able to update the firmware in these units.

    We introduced the Oscilloclock Garmin 18x USB Adapter, that allows an Oscilloclock owner to connect their puck to a PC to enable the firmware upgrade.

    In this post, we’ll take a look at the design of the Oscilloclock Garmin 18x USB Adapter. It wasn’t GPS satellite launcher (a.k.a. ‘rocket’) science, but it certainly wasn’t as straightforward as it might seem!

    The Garmin 18x LVC electrical interface

    Referencing the manual, the Garmin 18x series comes in 3 basic interface variations:

    • USB – USB 1.x interface, with a USB(-A) connector to plug into a PC
    • PC – RS-232 serial interface*, with a DB9 connector to plug into a PC, and a massive cigarette lighter adapter plug to obtain power
    • LVC – RS-232 serial interface*, with no connector – for wiring into a device

    For our Oscilloclocks, we use the LVC variation and fit an attractive custom connector solution, avoiding the PC variation with its venerable, utilitarian, and aesthetically unpleasant DB-9 connector and cigarette lighter plug combo. (We may buck the trend one day and intentionally fit such sockets into that special retro clock build – who knows?!)

    * Astute readers noticed the earlier asterisks. PC and LVC units are not quite true RS-232; their output voltage swings between 0V and +5V. Not so with devices having true RS-232 interfaces! A swing from -25V to +25V is legal and also lethal for any unsuspecting microcontroller. In the Oscilloclock design, we take advantage of Garmin’s voltage range cap to avoid having additional circuitry to adjust voltage levels.

    Interfacing the 18x LVC to a PC

    To upgrade the GPS firmware, the 18x LVC needs to connect nicely to a PC. But [Andrew] is an Oscilloclock Owner. He deserves more than just a good electrical connection. The interface also must be elegant and aesthetically pleasing, lightweight (for shipping), and easy to build. And – most of all – it has to be interesting enough to write a blog series about!

    We can start with Figure 1 in the manual, which describes the most basic interface hook-up possible.

    This interconnection option assumes two things: the PC has a DB-9 serial port, and there is a power source.

    If we extend this option slightly, to take power from the PC’s USB port, we arrive at this:

    (more…)
  • Longevity, and the Garmin “puck”

    Longevity, and the Garmin “puck”

    A few months ago, [Andrew] – of Metropolis Clock fame – reached out for help. He had just pulled his lovely Oscilloclocks out of storage to put on display, when he observed odd behaviour in both units: the time was accurate, but the date was stuck – to some random date back in 2003!

    What on earth was going on?

    What’s going on was not “on Earth” after all! [Andrew]’s clocks synchronise time and date against satellites, using an external Garmin GPS unit. And this unit happened to have a serious flaw. In this series of three articles, we’ll look closer at this accessory, identify this issue, and see how we were able to resolve it. Enjoy!


    Our longevity dream

    We want your Oscilloclock up and running as long as you are – and even beyond! Our dream is to see these beloved devices inherited by loved ones, and even available on the second-hand market as antiques one day.

    In an era of throw-away technology, we flaunt an unthinkable target: Decades of trouble-free* operation.

    * Excluding the CRT itself – although we really try hard with that as well, as this post explains!

    To maximise usable lifetime (and safety!), we construct Oscilloclock units from the finest materials and components available. As part of this, we also select manufacturers that guarantee their components and provide decent after-sales support.

    And Garmin is one such manufacturer…

    Welcome to the Garmin GPS ‘Puck’

    All Oscilloclock models that synchronise time using an external GPS unit have so far been supplied with a Garmin 18x LVC GPS unit, colloquially known as a ‘puck‘. (Note: to extend the lifetime of the pucks, we do not recommend using them on the hockey court.)

    Now, this is not the smallest external GPS unit on the market today. But it has been available from Garmin since 2007, and is even being manufactured today! It is one of the most sensitive, robust, and well-supported units out there.

    (Of course, for every new Oscilloclock delivered we evaluate afresh based on the latest devices available.)

    This puck has a special connector …

    How many times have you relegated an expensive laptop, phone, or other random device to the trash just because the power socket or headphone jack failed? Some of the weakest components of any electrical device are its connectors – plugs and sockets.

    To combat such failures, your puck is wired with an exceptionally high quality connector from Hirose. This connectivity solution is not only robust, it even feels good! There’s a lovely audible and tactile ‘click’ when you engage the plug, and it locks securely in place. And unlike cheap chrome-plated connectors, we’ve proven that these babies do NOT corrode, even after a decade.

    -- We don't scrimp - we only crimp!
    (more…)
  • It’s official: Oscilloclock is on Hiatus!

    Recent worldly events have taken a huge toll on the crafts and maker community globally. Sadly, the Oscilloclock Lab has not been immune.

    It is with a heavy heart that I announce that Oscilloclock will be on official hiatus until further notice, at very least until the end of 2022. We won’t be accepting any further orders or enquiries, but any repair work for existing Oscilloclock patrons will continue to be handled with great passion and gusto.

    This was a painful decision to make, but we are battling a perfect storm: extreme parts shortages, high shipping costs and long delays, a suddenly weakened yen (we are Japan-based), and an immediate need for your devoted cathode-ray engineer to focus on his day job and skills training as he reorganizes to go “back to office”.

    I’m hopeful that in the coming 6-12 months, many of these factors will go back to ‘normal’, and we can formally resume our beloved cathode-ray activities! Stay subscribed to the site for future updates.

    All the best from the entire Oscillofamily!

Recent Posts

Stats

205,114 hits

85,641 visitors